53 (IT 303) DLDG

2018

DIGITAL LOGIC DESIGN

Paper: IT 303

Full Marks: 100

Time: Three hours

The figures in the margin full marks for the questions indicate

Answer any five questions.

(a) Convert the following:

(i)
$$(41)_8 = (\)_2$$

(ii)
$$(DF2)_{16} = ()_2$$

(iii)
$$(12.25)_{10} = ()_2$$

(6) What do you understand by binary coding? Explain with an example

- (c) State De Morgan's theorem of Boolean Algebra. 2
- (d) Simplify $Y = abc + abc + \overline{a} + \overline{a}bc$ using Boolean algebraic techniques. 2
- (e) Draw the symbol of an X-NOR gate and write down the truth table of the same.
- (f) Describe the function of a 4:2 Encoder with truth table, block diagram, logic diagram.
- (g) Convert Y = ab + c into Canonical SOP form.
- (a) Define Maxterm and explain with an example.
- (b) Simplify
- $Y = \sum m(0, 1, 3, 5, 9, 10, 11, 12, 14) + d(2, 13)$ using K-map method. 6
- (c) Describe JK latch with logic diagram, truth table.
- (d) Design a 1:8 De-multiplexer.

- (e) How many control lines are needed to design a 16:1 Multiplexer.
- (a) Describe 4-bit asynchronous counter with block diagram, timing diagram and ncessary table.
- (b) Design a Mod-5 Counter with JK flipflop. 11
- (c) Distinguish between truth table and transition table.
- (a) Draw the State Transition diagram of a JK flip-flop.
- (b) Derive the characteristic equations of a JK flip-flop.
- (c) Simplify

 $Y = x\overline{y}z + xy + z + (x + \overline{y})(x + yz) + xz$ using Boolean algebraic techniques.

- (d) Simplify $Y = \Pi M(0, 1, 3, 4, 5, 9, 10, 11, 12)$ into POS form using K-map method. 6
- (e) Describe the function of a 4-bit RippleCarry Adder with block diagram. 4

53 (IT 303) DLDG/G

w

- (f) Find out the 2's complement of 111001111.
- 5. (a) Design a Full subtractor using minimum basic logic gates. 6
- (b) Explain the operation of a pulsetriggered SR latch. 4
- (c) Draw the block diagram of a Negativeedge triggered master-slave JK flip-flop.
- (d) Draw the State Transition diagram of a SR flip-flop.
- (e) State Distributive Law of Boolean Algebra. 2
- (f) Draw the block diagram of a 3-bit synchronous counter using JK flip-flop.
- (g) Draw the block diagram of a 3-bit Register using D flip-flop. 2
- 6. (a) Design a Mod-7 Counter using D flipflop.

(b) Convert the following:

N

- (i) $(F12)_{16} = ()_2$
- (ii) $(1101\cdot01)_2 = ()_{10}$.
- (c) Use only NOR gate to implement Y = ab + c.
- (d) Use only NAND gate to implement $Y = \overline{a}b + c$.
- (e) Derive the characteristic equations of a D flip-flop.
- 7. (a) Use basic logic gates to implement $Y = \overline{ab} + ab\overline{cd} + a\overline{bc} + \overline{abc} \cdot d.$ 3
- (b) State Commutative Law of Boolean 1
- (c) Draw the logic diagram of a 1-bit comparator.
- (d) Distinguish between combinational and sequential logic.
- (e) Prove that $\overline{a+b+c} = \overline{a} \cdot \overline{b} \cdot \overline{c}$.

N

- 5 Draw the logic diagram of a D latch.
- (g) multiplexer. Draw the block diagram of B 8:1
- triggered, master-slave Draw the symbol of 2 flip-flop. Positive-edge
- Prove that $x + \overline{x}y + \overline{x}yz = x + y$.
- (i) Define Minterm.
- 3 $1 \oplus 1 \oplus 0 \oplus 1 \oplus 0 =$
- Ex-3 code of 91 11
- (m) BCD code of 41 =
- (1) Prove that $(x+yz)(x+u\overline{x})(x+\overline{y}z)=x$.

100