53 (IE 303) EEMD

## 2018

## ELECTRICAL ENGINEERING MATERIALS AND DEVICES

Paper: IE 303

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions

Answer any five questions out of seven

- Explain the seven crystal systems. Give types of lattice structures in each class. their names, specifications and the
- (b) materials Silicon and structure and Differentiate crystal between the lattice GaAs. structure of the
- equation. Bragg's law with the help of necessary law? Discuss What do you understand by sany one application of

- 2. (a) List the assumptions in Drude model.
- (b) Derive the expression for AC conductivity of a material using Drude model.
- (c) Using Drude model, derive the probability for successive collisions by a single electron to be separated by a time 't'. Employing this result, derive the expression for heat generated per unit volume in a conductor due to the flow of electric current.
- (a) Explain the various phenomena associated with superconductivity. Differentiate between Type-I and Type-II superconductors. Give an example of high T<sub>C</sub> superconductor, and discuss its applications.
- (b) Derive the expression for thermal conductivity of a material using Drude's model.
- (c) Discuss the corrosion properties of Aluminium and Copper conductors.

(a) The electrons in conduction band of a semiconductor material can be represented using the effective mass equation,  $-\frac{\hbar^2}{2m_e^*}\nabla^2\psi(x,y,z)=E\psi(x,y,z)$  where  $\hbar$  is the Planck's constant and  $m_e^*$  is the electron effective mass. Derive the expression for density of states using periodic boundary conditions.

(b) Explain how Fermi-Dirac distribution function determines the number of electrons in conduction band. Derive the expression for this number in terms of effective density of states.

10

- 5. (a) Draw the energy band diagram of n-type and p-type semiconductors. Explain how Fermi level vary as a function of doping concentration.
- (b) Show that the product of electron and hole concentration is a constant and it is equal to the square of intrinsic carrier concentration, n<sub>i</sub>.

53 (IE 303) EEMD/G

- (c) Derive the expression for diffusion current in a semiconductor which is non-uniformly doped with donor impurity.
- (d) Show that the Fermi level is a constant along the length of a semiconductor at equilibrium conditions.
- 6. (a) Show that  $\frac{D_n}{\mu_u} = \frac{K_B T}{|q|}$

where  $D_n$  is the electron diffusion constant and  $\mu_u$  is electron mobility.  $K_B$  is the Boltzman's constant, T is the temperature in "K and K and K is the charge of electron.

- (b) Explain how n-type and p-type semiconductors can be distinguished using Hall effect.
- (c) Using schematic diagram, explain how dielectric materials can be polarized.
- (d) Define the term permittivity and discuss the case when it becomes a complex quantity.

- (a) Write short notes on the following types of magnetic materials —
  (i) dia, (ii) para, (iii) ferro and (iv) antiferro magnetic materials.
- (b) Distinguish between:
- (i) Piezo-electric Effect and Magnetostriction
- (ii) Soft and Hard Magnetic Materials.

Oi

4