53 (IE 301) NWTH

2018

NETWORK THEORY

Paper: IE 301

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) into a current source and vice versa? How a voltage source can be converted
- (d) network terminals Determine the resistance between A and B of the following the

Contd.

(c) Determine the current in the 1Ω resistor in the circuit:

- (d) Two batteries having emf of 10V and 7V and internal resistance of 2Ω and 3Ω respectively, are connected in parallel across a load resistance 1Ω. Calculate —
- (a) the individual battery currents
- (b) the current through the load
- (c) the voltage across the load
- (d) power consumed in the load.

OI

- (a) State the prove initial value and final value theorem.
- (b) How a series RLC circuit will respond to
- (i) Step function?
- (ii) Impulse function?
- 7+7=14
- 3. (a) The dc voltage is applied to the circuit shown in Fig. 3 keeping the switch K open so that steady state is reached.

 Determine the complete response for the circuit after closing the switch K.

2

w

(b) In the circuit shown in Fig. 4 the switch K is thrown from position A to position B at time t=0, the current having previously reached its steady state. Determine t(t) after switching.

(c) Determine the z-parameters of the network shown in Fig. 5.

(d) Determine the condition under which the input impedance of the network shown in Fig. 6 will be equal to R.

4. (a) A series combination of $R = 10\Omega$ and L = 20mH has a current $t = 5.0 \cos(500t + 10^{\circ})$ A. Obtain the voltages v and V, the phasor current I and sketch the phasor diagram.

(b) The current in a series circuit of R = 5Ω and L = 30mH lags the applied voltage by 80°. Determine the source frequency and impedance z.

- (c) (i) A sinusoidal voltage with $V_{eff} = 10V \text{ is connected across}$ $z_1 = 1 + j \text{ as shown in } Fig. 7(a).$ Find $i_1 I_{eff_1}$, $P_1(t)$, P_1 , Q_1 , power factor Pf_1 and S_1 .
- (ii) Repeat part (i) replacing the load z_1 in (i) by $z_2 = 1 j$ as shown in Fig. 7(b).
- (iii) Repeat part (i) after connecting in parallel z_1 in (i) and z_2 in (ii) as shown in Fig. 7(c).

10

5. (a) Determine the current through the 3\(\Omega\$ resistor in the circuit shown in Fig. 8 by using Superposition theorem

53 (IE 301) NWTH/G

7

(b) Using Thevenin's theorem find the current I that will flow through the switch S in the circuit shown in Fig. 9, when it is closed. Specify the direction as well as magnitude of I.

(c) Draw the Norton's equivalent circuit at the terminals A-B for the given circuit of Fig. 10. If a 2Ω resistance is connected across A-B, determine the current through it.

6. (a) State and explain Compensation theorem and Tellegen's theorem.

A solenoid consists of 2000 turns of wire wound on a length of 70cm. A search coil of 500 turns enclosing a mean area of 30cm² is placed centrally in the solenoid.

6

Calculate:

- (i) the mutual inductance
- (ii) the *emf* induced in search coil when the current in solenoid is changing uniformly at a rate of 260A/sec.
- (c) The coefficient of coupling between two coils is 0.75. There are 250 turns in coil 1. The total flux linking coil 1 is 0.4mWb, when the current in this coil is 3A. When i₁ is changed from 3A to zero linearly in 3ms, the voltage induced in coil 2 is 70V. Calculate L₁, L₂, M, N₂.
- 7. (a) Give comparison between star and delta-connected three-phase systems.

(b) A 220V, three-phase voltage is applied to a balanced, delta-connected threephase load by phase impedance

(15+ j20).Q. Find—

- (i) the current in each line
- (ii) the power consumed per phase
- the phasor sum of the three line currents.
- State the advantages of Three-phase systems.