53 (CS 304) DTST

2018

DATA STRUCTURE

Paper: CS 304

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- briefly. Define abstract data type. Explain Ħ
- (B) Explain about asymptotic notation.
- 0 W=4.address of A=1000 and word per cell, Consider the $A = 20 \times 5$, 2D array. Base

column major order Find A[15,4], when we represent the address of A[10,3] 1 and in

2. (A) Suppose a 10 element array, M contains the values $a_1, a_2 \cdots a_{10}$.

Find the values in M after each loop.

(i) Repeat for K=1 to 9 Set M[K+1]=M[K]

- (ii) K = 9 to 1 by -1 Set M[K+1] = M[9]
- (B) Discuss the advantages, if any of a twoway list over a one-way list. 3
- (C) Define header linked list. What is its advantages?
- (D) Consider following infix arithmetic expression:

 $Q: A + (B*C - (D/E \uparrow F)*G)*H$ convert into post fix expression

- (A) Write a function/pseudocode for the following operation in a single linked list:
- (i) Delete a node whose key information is given.

- (ii) Insert an element at last position.
- (iii) Count the number of elements.
- (iv) Insert at first position.
- (B) Let, a and b denote positive integers suppose a function Q is defined recursively as follows:

$$Q(a,b) = \begin{cases} 0 & \text{if } a < b ; \\ Q(a-b,b)+1 & \text{if } b \Leftarrow a \end{cases}$$

Find the value of Q(2,3) and Q(6,3).

- (A) Write a function/pseudocode for PUSH and POP operation, when we represent a STACK using linked list.
- (B) A binary tree has 9 nodes. Inorder and preorder traversal of tree yield the following sequences of nodes:

Preorder - DCABIEFGH

Inorder - ACIBDGHFE

Draw the Tree.

53 (CS 304) DTST/G

- (C) Suppose a QUEUE is maintained by a circular array QUEUE with N=12 memory cell. Find the number of elements in QUEUE if
- i) Front = 10, Rear = 3 and
- (ii) Front = 5, Rear = 6 and then two elements are deleted.
- 5. (A) Define following term for the binary tree:
- (i) Level
- (ii) Height
- (iii) Complete binary tree
- (iv) Full binary tree
- (v) Path
- (B) Suppose the following eight numbers are inserted in order into an empty Binary Search Tree (BST) T.
 70, 60, 50, 80, 90, 100, 150, 95
 Draw the Tree.

- (C) Write a function/pseudocode for Binary Search. What is its complexity? 8
- 6. (A) What is Spanning tree? What is minimum spanning tree? Find the minimum spanning tree of the following graph, G.

(B) Write a function/pseudocode for Quick sort technique. What is its complexity?

4

S

(C) Consider the following graph, G. CI

Assume 1 as starting node. Depth First Search (DFS) traversal. Find its Breadth First Search (BFS) and

- 70, 80, 90, 85, 82, 75, 78, 100, 95, initially empty AVL search tree. 150, 140.
- Define AVL Search tree. Insert the following elements in order into an

- (B) 65, 70, 60, 80, 85, 78, 90, 55, 50 Sort the following elements using insertion sort: What is its complexity in average case?
- 0 What is Hashing? What you mean by collision?

7