53 (MA 101) ENMA-I

2018

ENGINEERING MATHEMATICS-I

Paper: MA 101

Full Marks: 100

Time: Three hours

full marks for the questions. figures in the margin indicate

Answer any five questions.

 (a) State D'Alemberts Ratio test. Examine the convergency of the series

$$\sum_{n} \frac{1.2.3...n}{7.10.13....(3n+4)}.$$

2+4=6

Find the equation of the plane through

the line
$$\frac{x-1}{3} = \frac{y+2}{1} = \frac{z-3}{-4}$$
 and

parallel to the line
$$\frac{x+3}{4} = \frac{y-2}{-2} = \frac{z+1}{5}$$
.

Contd.

- (c) Show that the lines whose direction are parallel if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$. cosines are given by the equations l+m+n=0and $al^2 + bm^2 + cn^2 = 0$
- 2 (a) If $y = a\cos(\log x) + b\sin(\log x)$, show $x^2y_{n+2} + (2n+1)xy_{n+1} + (n^2+1)y_n = 0$
- (b) Expand $\sin x$ in power of $\left(x-\frac{\pi}{2}\right)$ and decimal places. determine sin91°, correct to four
- (0) Find the asymptotes of the curve $x^3 + 3x^2y - 4y^3 - x + y + 3 = 0$
- (a) Form the differential equation of the following equations $Ax^2 + By^2 = 1$, A, B are arbitrary 4×2=8
- constants

- (ii) $y = e^x (A\cos x + B\sin x),$ where A, B are arbitrary constants.
- *(b)* Solve : (any two)

- (i) $(x+1)\frac{dy}{dx} = x(y^2+1)$
- $e^x \tan y \, dx + \left(1 e^x\right) \sec^2 y \, dy = 0$
- $3\frac{dy}{dx} + \frac{3y}{x} = 2x^4y^4$
- (a) Is the series convergent ? Justify.
- 6 Find the equation of the sphere through the points (0,0,0), (0,1,-1), (-1,2,0) and (1,2,3).

N

Contd.

ω

- 0 Solve the simultaneous differential equation $\frac{dx}{dt} + \frac{dy}{dt} + y = 1$ and $\frac{dx}{dt} + \frac{dy}{dt} + x = 0.$ CI
- (d) Solve $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = \sin h(x)$. OI
- Ċ (a) Find the radius of curvature at any point θ of the curve $x = a(\theta - \sin \theta)$ and $y = a(1 - \cos\theta).$
- *(b)* $u = xy + \frac{a^3}{x} + \frac{a^3}{y}$ has a minimum value Show that the function
- at (a,a)

CI

0 Show that the series $\sum_{n=0}^{\infty} (-1)^{n-1} \sin\left(\frac{1}{n^2}\right)$ is absolutely convergent.

- (d) Find the equation of the plane which perpendicular to the planes x-y+3z=12 and 3x+y-z=0. passes through the point (1,2,3) and is
- 6 (a) Find the order and degree of the differential equation — 2×2=4

(i)
$$\cos x \frac{d^2y}{dx^2} + \sin x \left(\frac{dy}{dx}\right) + y = \tan x$$

(ii)
$$\frac{d^2y}{dx^2} + exp\left(\frac{dy}{dx}\right) + y = \log x$$

3×2=6

(i)
$$\frac{d^2y}{dx^2} - \frac{dy}{dx} - 6y = e^{3x}$$

(ii)
$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = x$$

CI

- (c) Find the centre of curvature of the curve $y = x^3 6x^2 + 3x + 1$ at (1,-1).
- (d) Find the area of the surface formed by the revolution of $y^2 = 4ax$ about the x-axis, by an arc from the vertex to one end of the latus rectum.
- 7. (a) (i) Find the reduction formula for $\int \sin^n x \, dx.$
- (ii) Evaluate $\int \sin^4 x \cos^2 x dx$. 3+2=5
- (b) Find the length of the arc of the parabola $y^2 = 16x$ measured from the vertex to an extremity of the latus rectum.

- (c) Show that the series $\sum \frac{(n+1)^n x^n}{n^{n+1}}$ is convergent if x < 1 and divergent if $x \ge 1$.
- (d) Find the n^{th} derivative of $x^{n-1}\log x$.

7