Total No. of printed pages $=4$
CT-401/SA/4th Sem/2016/N

STRUCTURAL ANALYSIS

Full Marks - 70
Pass Marks - 28
Time - Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. Determine the horizontal displacement of the roller end D of the portal frame shown in fig.1, when $\mathrm{p}=5 \mathrm{kN}$ and EI is $8000 \mathrm{kNm}^{2}$ throughout. 14

Fig. 1
2. Define the following :
(i) Determinate and indeterminate structure.
(ii) Moment area theorems.
(iii) Hooke's law.
(iv) Strain energy.
(v) Principle of superposition.
3. Four point loads $8,15,15$ and 10 kN have centre to centre spacing of 2 m between consecutive loads and they traverse a girder of 30 m span from left to right with 10 kN load tending. Calculate the maximum bending moment and shear force at 8 m from the left support.

14
4. (a) Describe conjugate beam theorems.
(b) Determine the rotations at A, B, C, E and defections at C, D and E in the beam as shown in fig. 2.

Fig. 2
5. Determine the rotation at supports and deflection at midspan and under the loads in the simply supported beam shown in fig. 3.14

$1-\frac{L}{3} \rightarrow \frac{L}{3} \rightarrow \frac{L}{3} \rightarrow$

Fig. 3
6. Determine the vertical and the horizontal deflection at the free end of the bent shown in fig. 4. Assume uniform flexural rigidity throughout. 14

Fig. 4
7. A circular arch of span 25 m with a central rise of 5 m is hinged at the crown and at springing point. It carries a point load of 100 kN at 6 m from the left support. Calculate : 14
(i) The reactions at the supports.
(ii) The reactions at the crown.
(iii) Moment at 6 m from the left support.

