Total No. of printed pages = 4

CAI-303/DC/3rd Sem/2016/N

DIGITAL CIRCUITS

Full Marks – 70 Pass Marks – 28 Time – Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

1. (a) Convert the following :

1×5=5

1

(i) $(2F1)_{16} = (?)_{2}$ (ii) $(1A1)_{16} = (?)_{10}$ (iii) $(101011)_{2} = (?)_{8}$ (iv) $(123)_{8} = (?)_{10}$

(v) $(101111)_2 = (?)_{10}$

- (b) Perform addition 10101 + 10110
- (c) Subtract using 2's complement method 2
 1011 1000

[Turn over

- (d) State De-Morgan's law of Boolean algebra.
- (e) Simplify using Boolean algebra 4 f(x,y,z) = (x+y)(x+yz)(x+y'z)(x+y)'(x+x)'
- 2. (a) Simplify using K-map method 5

 $f(w, x, y, z) = \sum m(0, 1, 2, 3, 8, 9, 10, 11) + d (13, 14)$

(b) Why NAND, NOR gates are called universal gates ? 2

(c) Use basic gates only to implement the below Boolean equation 3

Y = f(a, b, c) = ab'c + (a + b) (c' + d)

- (d) Use only NAND gate to implement 4 Y = (a + b + c) (a + b + d)
- 3. (a) Draw the block diagram of an Encoder. 2
 - (b) Design a 2 to 4 Decoder. 5
 - (c) Write down the truth table of a full subtractor. 3

4

(d) Smplify using k-map method

 $f(a, b, c) = \sum m(0, 2, 3, 4, 5)$

(2)

198/CAI-303/DC

4.	(a)	Draw the logic circuit of S-R latch w enable and explain its function with tru table. 2+4=	ıth
	(b)	Write few important differences betwee sequential and combinational circuits.	en 3
	(c)	Explain the truth table of J-K latch alow with its logic diagram.	ng 5
5.	(a)	Design a 4:1 Multiplexer.	5
	(b)	Write Ex-3 and BCD code of decimal 24	5. 2
	(c)	State commutative and distributive law Boolean algebra.	of 3
	(d)	Write a 3 bit gray code sequence.	2
	(e)	Draw the block diagram of 1 : 8 demultiplexe	er. 2
6.	(a)	Design a Full Adder.	5
	(b)	Use only NOR gate to implement complementary, AND, OR functions.	e- 6
	(c)	Convert the following into cannonical form	n.
		f(x, y, z) = x' + yz. 3	
198/CAI-303/DC (3) [Turn over			*

- 7. (a) Draw the block diagram of 2 bit ripple carry adder. 2
 - (b) Draw the block diagram and describe the operation of a 2 bit binary counter. 6
 - (c) Describe the operation of a 3 bit Register with its block diagram. 6

and the line for a start when

(4)