Total No. of printed pages = 6

Sc-202/Maths-II/2nd Sem/2016/N

MATHEMATICS - II

Full Marks - 70

Pass Marks - 21

Time - Three hours

The figures in the margin indicate full marks for the questions.

GROUP – A

1. (a) A function f(x) is defined as follows : 3 $f(x) = 2x^2 + 3$, $0 \le x \le 2$

 $= 3x - 5, \qquad 2 < x \le 4$ find f(0), f(1), f(3).

(b) Find the Domain of the function :

2

$$f(Z) = \frac{3z^3 + 4z - 1}{(z - 2)(z - 1)}$$

[Turn over

2. Find the limit (any two) : $2 \times 3 = 6$

(i)
$$\lim_{x \to 0} \log(1 + x)$$

(ii)
$$\lim_{x \to \infty} \frac{2x(x+1)}{(x+4)(x-1)}$$

(iii)
$$\lim_{x \to 0} \frac{8^x - 2^x}{x}$$

(iv)
$$\lim_{x \to 2} \frac{x^2 - 5x + 6}{x^2 - 7x + 10}$$

3. Find
$$\frac{dy}{dx}$$
 of $y = a^x$ using first principle. 3

4. Find
$$\frac{dy}{dx}$$
 (any two) : (any two) 2×3=6

- (i) $y = e^{x \sin x}$ on to monothead bars (d).
- (ii) $y = (\sec x)^{\tan x}$
- (iii) $x = a \cos^3 0$, $y = b \sin^3 0$

- 5. (a) Find the points on the curve $y = x^3 2x^2 + x$ at which the tangents are parallel to X-axis. Also find the tangents at these points. 4
 - (b) If $y = (\tan^{-1}x)^2$ show that $(1+x^2)^2 y_2 + 2x$ $(1+x^2) y_1 - 2 = 0.$ 3
 - (c) Show that $f(x) = x^3 6x^2 + 24x + 4$ has neither maxima nor minima. 3

GROUP – B

6. Integrate any *three* of the following : $2 \times 3 = 6$

(i) $\int \frac{dx}{a+bx^2}$

(ii) $\int \sin mx \sin nx \, dx$

(iii)
$$\int \frac{e^{5x} + e^{3x}}{e^x + e^{-x}} dx$$

(iv) $\int \sqrt{1+\sin 2x} \, dx$

7. Integrate any *three* of the following : $3 \times 3=9$ (i) $\int_0^1 \frac{dx}{\sqrt{x+1} - \sqrt{x}}$

(3)

53/Sc-202/Maths-II

[Turn over

(ii)
$$\int_0^{\pi/2} \sin^2 x \cos^2 x \, dx$$

(iii)
$$\int_0^{\pi/2} \frac{dx}{2 + \cos x}$$

(iv)
$$\int x^3 \cos x \, dx$$

(v)
$$\int \frac{x-15}{x^2-5x+6} dx$$

8. (a) Find the circumference of the circle $x^2 + y^2 = a^2$ 2

4

2100(P)

(b) Evaluate :
$$\int_{0}^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx$$

$$\lim_{x \to \infty} \left[\frac{1}{n} + \frac{n^2}{(n+1)^3} + \frac{n^2}{(n+2)^3} + \dots + \frac{1}{8n} \right]$$

Or

GROUP - C

9. Answer any five questions : $5 \times 2 = 10$

(i) Write the locus of a point equidistant from a fixed point (h, k), where the distance is 'k'.

(ii) Change $r = a \sin 2\theta$ to Cartesian form.

- (iii) Show that the points (0, 0), $(0, \pi/3)$ and $(0, 2\pi/3)$ are the vertices of an equilateral triangle.
 - (iv) In what ratio the line segment joining A(3, 4) and B(5, -7) will be divided by Y-axis ?
 - (v) Find the area of the quadrilateral formed by the points (0, 3), (2, -1), (5, 0) and (4, 6).
 - (vi) Show that the lines 2x y + 8 = 0, 3x + y+2 = 0 and 4x + 3y 4 = 0 are concurrent.
 - (vii) Find the eccentricity, focii, length of the L. R and the equation of the directrix of the hyperbola $16x^2 9y^2 = 144$.

10. Answer any three questions : $3 \times 3 = 9$

- (i) Find the equation of the straight line which passes through the point (2, 3) and whose sum of the intercepts on X-axis and Y-axis equals 10.
- (ii) Find the equation of the tangent to the circle $x^{2} + y^{2} - 6x - 3y - 2 = 0$ at (2, -2).

(5)

53/Sc-202/Maths-II

[Turn over

- (iii) Express $x + \sqrt{3y} = 8$ in the perpendicular form. Also find ' α '.
 - (iv) Find the equation of the parabola with focus at (1, -3) and directrix x 2y + 3 = 0.
- (v) The latus rectum of an ellipse is half of its major axis. Find the value of the two eccentricities.

2100(P)