53 (EC 603) DSPR

2016 2016

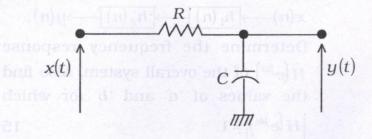
DIGITAL SIGNAL PROCESSING

Paper: EC 603

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.


Answer any five questions.

1. (a) Two causal systems with impulse responses $h_1(n) = a\delta(n) + \delta(n-1)$ and $h_2(n) = b^n u(n)$; where |b| < 1 are connected in cascade as shown below: $x(n) \longrightarrow h_1(n) \longrightarrow h_2(n) \longrightarrow y(n)$. Determine the frequency response $H(e^{j\omega})$ of the overall system. Also find the values of 'a' and 'b' for which $|H(e^{j\omega})| = 1$.

- (b) Why folding operation is necessary in convolution formula? 5
- 2. Calculate the output sequence of a system with impulse response $h(n) = \left(\frac{1}{4}\right)^n u(n)$ when the input is a complex exponential sequence $x(n) = 4e^{j\pi n/2}$; $-\infty < n < \infty$. Deduce the necessary theory for the above.

15+5

3. (a) In the given low-pass RC network shown below with $R = 1 M\Omega$ and $C = 1 \mu F$, determine the equivalent discrete-time expression for the circuit response y(n), when the input is given by x(t) = exp(-2t) and the sampling frequency is 50Hz.

- (b) State sampling theorem for a bandlimited signal x(t).
- 4. Show that the analog transfer function $Ha(s) = \frac{b.s}{s^2 + b.s + \Omega_0^2}$; b > 0 has a bandpass magnitude response with $|Ha(j0)| = |Ha(j\infty)| = 0$ and $|Ha(j\Omega_0)| = 1$. Determine the frequencies Ω_1 and Ω_2 at which the gain is 3dB below the maximum value of 0dB at Ω_0 . Show that $\Omega_1 \cdot \Omega_2 = \Omega_0^2$. Hence show that $b = \Omega_2 \Omega_1$; which is the 3dB bandwidth of the bandpass transfer function.
- 5. A digital low-pass filter is to be designed with the following desired frequency response:

$$Hd(e^{j\omega}) = \begin{cases} e^{-j2w}; & \frac{-\pi}{4} \le w \le \pi/4 \\ 0; & \pi/4 \le \omega \le \pi \end{cases}$$

Calculate the filter's coefficients hd(n) if the window function is defined as

$$w(n) = \begin{cases} 1; & 0 \le n \le 4 \\ 0; & \text{elsewhere} \end{cases}$$

Also, find the frequency response H(w) of the designed filter. 15+5

- 6. Write short notes on : (any two) 10 + 10
- Digital resonator (i)
 - Bilinear transformation (ii)
- (iii) Subband coding of speech signals.

value of 0dB at Q_0 . Show-that $Q_1,Q_2=Q_0^2$