Total number of printed pages-7

53 (IE 303) EEMD

2016 and 2016

ELECTRICAL ENGINEERING MATERIALS AND DEVICES

Paper : IE 303

Full Marks : 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

- 1. (a) What is the objective of studying the subject Electrical Engineering Materials and Devices? 3
 - (b) Write the quantum condition postulated by Bohr. 3

- (c) What is transition elements? 2
- (d) What is the resemblance between valence crystals and metals? 2
- (e) According to wave mechanics, the wavelength λ of an electron is related to the momentum p of the electron by means of the so-called de Broglie formula $\lambda = h/p$, where h is Planck's constant. Show that the wavelength of an electron with kinetic energy of V electron volts is given by $\lambda = (150/V)^{1/2}$ angstroms. 10
- 2. (a) Define dipole moment. 3
 - (b) What is the difference between ionic and electronic polarization?3

53 (IE 303) EEMD/G 2

(c) For monoatomic gases, derive the relationship between dielectric constant and the electronic polarizability.

- (d) With reference to a two-dimensional Cartesian coordinate system x, y, four point charges are located as follows : a charge of Q coulombs in the point (0, 0); -Q in (1, 0); 2Q in (1, 1); and -2Q in (0, 1); the numbers refer to meters. Find the magnitude and direction of the dipole moment of the system.
- 3. (a) What is alternating field?
 (b) Derive the expression for complex polarizability.

3

53 (IE 303) EEMD/G

Contd.

(c)

Consider a parallel plate condenser with a lossy dielectric between them. At an angular frequency ω let the dielectric be characterized by a complex dielectric constant $\in_r^* = \in_r' - j \in_r''$. The area of the plates is $1m^2$, the distance between them 1m. For an applied voltage $V(t) = V_0 \cos \omega t$ show that the current through the lossy condenser is given by

> $i(t) = \in_0 \in_r'' V_0 \cos \omega t - \in_0 \in_r' V_0 \omega \sin \omega t$ 10

- 4. (a) Write and discuss the law of Biot and 4 Savart.
- Curie (b) What is ferromagnetic 3 temperature?
 - 3 Define coercive force. (c)
 - The magnetic field strength in a piece (d)of Fe_2O_3 is 10⁶ ampere m^{-1} . Given that the susceptibility of Fe_2O_3 at room temperature is 1.4×10^{-3} , find the flux density and the magnetization in the 10 material.

53 (IE 303) EEMD/G

4

5. (a) Write the differences between drift current and diffusion current and derive the Einstein relation for electrons and holes. 2+8=10

- (b) Explain the mass-action law and how the concentration of charge carriers can be found with the help of it.
- (c) In a *p*-type semiconductor the acceptor density is $10^{20} atoms/m^3$. Intrinsic concentration is $2.5 \times 10^{19}/m^3$ at 300K. Calculate the hole and electron concentration. 2
- 6. (a) Discuss some application of conductor materials in — 8
- Transmission lines/cables
 - (ii) Transformers

eraphycelly? Is it temperature

- (iii) DC machines
- (iv) $3-\phi$ induction motors

53 (IE 303) EEMD/G

Contd.

(b) What is the Meissner Effect? 2

(c) What is Hall-effect and write some applications of this effect.

> An N-type germanium sample has a donor density of $10^{21}/m^3$. It is arranged in a Hall experiment having magnetic field of 0.2T and the current density is $600 A/m^2$. Determine the Hall voltage if d = 4mm. 1+3+6=10

7. (a) Define the temperature co-efficient of resistance. How α is determine graphycally? Is it temperature dependent? Also prove that -

 $R_2 = R_1 \left[1 + \alpha_1 (t_2 - t_1) \right]$

6

Where R_1 and R_2 are the resistances of a conductor at $t_1^{\circ}C$ and $t_2^{\circ}C$ respectively and α_1 is the temperature co-efficient at $t_1^\circ C$. 1+3+1+5=10

53 (IE 303) EEMD/G

(b) Two materials A and B have resistance temperature co-efficients of 0.004 and 0.0004 respectively at a given temperature. In what proportion must A and B be joined in series to produce a circuit having a temperature coefficient of 0.001?

Verywards Artestoriasio

all marks for the questions.

53 (IE 303) EEMD/G

7

200