53 (CY 201) ENCH

2016

ENGINEERING CHEMISTRY

Paper: CY 201

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer Q. No. 1 and any four from the rest.

1. (a)	Fill	in the blanks: 1×6=	=6
	(i)	The Monomer Unit of natur	al
	(ii)	The stability of 2° amine isthan 3° amine.	2
eg, by	(iii)	Molecular weight related intrinsic viscosity as	to

- (iv) The catalyst used in the preparation of PP is _____.
- (v) The unit of rate constant of 3rd order reaction is _____.
- (vi) The rate of wet corrosion is _____ than dry corrosion.
- (b) Write a note on types of hydrogen bond with proper examples. 4
- (c) What is salt-bridge? Why is KCl generally preferred to construct salt-bridge? 2
- (d) Define the terms Bathochromic,
 Hypsochromic, Hyperchromic and
 Hypochromic shifts.
 - (e) For the displacement reaction

$$\begin{bmatrix} Co(NH_3)_5 Cl \end{bmatrix}^{+2} + H_2O \rightarrow \begin{bmatrix} Co(NH_3)_5 (H_2O)^{3+} \end{bmatrix} + Cl^-,$$
 the rate constant is given by
$$\ln \left[K \left(min^{-1} \right) = -10.067 \, K/T \right] + 4.133;$$
 evaluate K , E and A for the reaction at $25^{\circ}C$.

- 2. (a) Describe the instrumentation of mass spectrometer with suitable diagrams.
 - (b) Compare the properties of ionic and covalent compounds.
 - (c) What is the rate value for given 3^{rd} order reaction? Calculate with the help of integration by parts. Find out the half-life for the reaction. The reaction is A+B+C=P. 3+2=5
 - (d) Explain effect of temperature on rate constant of a reaction with Arrhenius equation.
- 3. (a) What are polar and non-polar covalent bonds? Explain with examples. 4
 - (b) What is the electrochemical series?

 Mention few characteristics and applications of this series. 2+2+2=6
 - (c) Why phenol is acidic? Explain with the resonance structures.
 - (d) 50% of a 1st order reaction is completed in 23 mins. Calculate the time required for 90% completion of reaction.

- (e) Distinguish between Octane number and Cetane number.
- 4. (a) What is activation energy? Give the graphical representation of activation energy profile diagram for catalysed and non-catalysed reactions. 2+2=4
 - (b) Write the name of the monomer units of (i) Terylene, (ii) Nylon-6, 6 and (iii) Polypropylene. Draw the structure of monomer units of these polymers.

 2+2+1=5
 - (c) What do you mean by hybridization of atomic orbitals. Describe the types of hybridization associated with CH_4 , C_2H_4 and C_2H_2 . 2+6=8
 - (d) Explain the terms Parent Ion Peaks, Base Peak and Relative Abundance.
 3
- 5. (a) How the molecular weight of a polymer can be determined by Osmotic Pressure method? Draw the plot of $\lim C \to O P/C$ versus concentration.

3+2=5

(b) Define Inductive effect. Distinguish between +I effect and -I effect. 3
(c) What do you mean by pseudo-1st order reaction? Give example.
(d) What is a coordinate or dative bond? Explain the formation of NH_4^+ ion.
(e) Taking the H ₂ O molecule as an example, explain the various types of stretching and bending vibrations associated with infrared spectroscopy.
(a) Distinguish between — producer gas and natural gas. 5
(b) Give a proper reaction to explain Hofmann exhaustive methylation.
(c) The intrinsic viscosity of myosin is $217cm^3g^{-1}$. Calculate the approximate concentration of myosin in water which

have relative viscosity of 1.5.

3

Describe various types of electronic (d) transitions involved in UV-visible spectroscopy with a suitable diagram.

6

- (e) Calculate the electrode potential of copper, if the concentration of CuSO₄ is 0.206M at 23.1°C. Given that
 - $E^{o}Cu^{+2}/Cu = +0.34V$
- (a) Write down the cell reactions involved in $h_2 - O_2$ fuel cell. Mention the advantages and disadvantages of $h_2 - O_2$ fuel cells. I landed box 2+4=6
 - State the points of difference between electroplating and electroless-plating.

4

Distinguish between Snytzeff's rule and (c) 3 Hofmann rule.

- (d) If a 1st order reaction has $E_a = 104500 J/mol$ and if $A = 5 \times 10^{13} Sec^{-1}$. Calculate temperature at which its half-life is 7 mins.
- (e) A solution contains equal number of particles with molar masses 10,000 g mol⁻¹ and 20,000 g mol⁻¹ respectively. Calculate number-average, weight-average, molar weight and PDI. 1+1+3=5