2015

DIGITAL SIGNAL PROCESSING

Paper: EC 603

Full Marks: 100

Time : Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions.

(a) Consider a discrete time system 1. characterized by the following inputoutput relation. Determine whether it is linear, memoryless, stable, causal and time invariant y(n) = x(n+2)-2x(n-7)+9

$$y(n) = x(n+2)-2x(n-7)+9$$
 5

An LTI system is characterized by an (b) impulse response

$$h(n) = \left(\frac{3}{4}\right)^n u(n)$$

Find the step response of the system. Also evaluate output of the system at $n=\pm 5$. 5

(c) Compute
$$y(n) = x(n) * h(n)$$
 where $x(n) = \alpha^n u(n)$ $h(n) = \beta^n u(n)$ $0 < \alpha, \beta < 1$

- (d) Let y(n) denote the convolution of h(n) and g(n) where $h(n) = \left(\frac{1}{2}\right)^n u(n)$ and g(n) is causal sequence. If y(0) = 1 and $y(1) = \frac{1}{2}$, then find g(1).
- 2. (a) Find the DTFT of the following signals (i) $x(n) = a^{|n|}$ |a| < 1(ii) x(n) = u(n) 3+5=8
 - (b) Consider the filter y(n) = 0.9y(n-1) + bx(n) Determine b so that $|H(e^{jo})| = 1$ 2
 - (c) State and prove the time-shifting property of DTFT.
 - (d) Find the inverse DTFT of the rectangular pulse spectrum defined only for $-\pi \le w \le \pi$

$$X\left(e^{jw}\right) = \begin{cases} 1 & |w| < w_c \\ 0 & w_c < |w| \le \pi \end{cases}$$

A discrete-time system with input x(n)(e) and output y(n) is described by the relation

$$Y\left(e^{jw}\right) = e^{-jw} \times \left(e^{jw}\right) + \frac{d}{dw} \times \left(e^{jw}\right)$$

Find the output y(n) if $x(n) = \delta(n)$

5

3. (a) Determine the z-transform of the following signal

$$x(n) = \frac{1}{3} (n^2 + n) \left(\frac{1}{2}\right)^{n-1} u(n-1)$$
 4

Determine the inverse z-transform

$$X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$$

if

(i)
$$ROC |z| > 1$$

(ii)
$$ROC |z| < 0.5$$

(iii)
$$ROC \quad 0.5 < |z| < 1$$

(c) When input $x(n) = u(n) + \left(-\frac{1}{2}\right)^n u(n)$ is applied to a linear causal time invariant system, the output is

 $y(n) = 6\left(-\frac{1}{4}\right)^n u(n) - 6\left(-\frac{1}{3}\right)^n u(n)$

Find the transfer function of the system.

(ii) What is the difference equation representation of the system?

4+3=7

4

A causal LTI system is described by the difference equation

$$2y(n) = \alpha y(n-2) - 2x(n) + \beta x(n-1)$$
Find the value of α and β for which

Find the value of α and β for which the system is stable.

(a) Let x(n) be a real sequence defined by x(n) = (1, 2, 3, 4). Without evaluating its 4. DFT X(K) find

(i)
$$\sum_{K=0}^{3} X(K)$$

(ii) X(0)

(b) Let x(n) be real sequence of length N and its N-point DFT is given by X(K)show that

(i) X(N-K) = X * (K)

(ii) X(0) is real

(iii) if N is even, $X\left(\frac{N}{2}\right)$ is real 6 (c) Let x(n) be a finite length sequence $X(K) = \{0, 1+j, 1, 1-j\}$. Using the properties of DFT, find the DFT of the following sequence

(i)
$$x_1(n) = e^{i\pi/2} x(n)$$

(ii) $x_2(n) = \cos\left\{\left(\frac{\pi}{2}\right)n\right\} x(n)$
(iii) $x_3(n) = x((n-1))$

(d) Let X(K) denote a 6- point DFT of a length 6 real sequence x(n). The sequence is shown in the figure. Without computing the DFT find the length 6-sequence y(n) whose 6-point DFT is given by $Y(K) = W_3^{2K} X(K)$.

5. (a) The transfer function of a discrete causal system is given as follows:

$$H(z) = \frac{1 - z^{-1}}{1 - 0.2z^{-1} - 0.15z^{-2}}$$

- (i) Draw cascade and parallel realization.
- Find the impulse response of the (ii) 5+2=7 system.
- A linear time invariant system is 6 (b) described by the following input-output relation

relation

$$2y(n)-y(n-2)-4y(n-3)=3x(n-2)$$

Realize the system using direct form-II realization.

Consider a three-stage FIR lattice (c) structure having the coefficients: $K_3 = 0.8$ $K_1 = 0.65$, $K_2 = 0.34$, Evaluate its impulse response by tracing a unit impulse $\delta(n)$ at its input through the lattice structure. Also draw its direct form-I structure.

5+2=7

of the sequence $x(n) = \left(\frac{1}{2}\right)^n u(n)$. Let $x_1(n)$ denote a sequence of finite duration of length 10; ie $x_1(n) = 0$ for n < 0 and $x_1(n) = 0$ for $n \ge 10$. The 10 point DFT of $x_1(n)$ denoted by $x_1(K)$ corresponds to 10 equally spaced samples of X(w); that is

$$X_1(K) = X(w)\Big|_{w=\frac{2\pi k}{10}}$$
. Determine $x_1(n)$.

10

- (b) Bring out the comparison between IIR and FIR filter. 5
- (c) A lowpass filter is to be designed with the following desired frequency response

$$H_{d}(e^{iw}) = H_{d}(w) = \begin{cases} e^{-jzw} &, |w| < \frac{\pi}{4} \\ 0 & \frac{\pi}{4} < |w| < \pi \end{cases}$$

Determine the filter co-efficients $h_d(n)$ and G(n) if W(n) is a rectangular window defined as follows

$$W_R(n) = \begin{cases} 1 & 0 \le n \le 4 \\ 0 & \text{otherwise} \end{cases}$$

7. (a) Design a digital lowpass filter using Buterworth approximation by impulse invariance. The specifications are as follows

| 1010ws

$$0.89125 \le |H(w)| \le 1 \text{ for } 0 \le w \le 0.2\pi$$

 $|H(w)| \le 0.17783 \text{ for } 0.3\pi \le w \le \pi$.

- (b) Obtain the digital filter equivalent to analog filter shown in the following fig. using
 - (i) Impulse invariant transformation
 - (ii) Bilinear transformation

Assuming the sampling frequency where F_c is the cut-off frequency of the filter. $W_R(n) = \begin{cases} \text{timple } 0 \le n \le 4 \end{cases}$

-otherwise