53 (CS 502) THCM

2015

THEORY OF COMPUTATION

Paper: CS 502

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer any five questions out of seven.

- 1. (a) Construct a DFA accepting all strings over $\{a,b\}$ ending in ab.
 - (b) Construct a DFA equivalent to the NDFAM whose transition diagram is given by

OMOHT (SOZ Contd.

(c) Construct a minimum state automaton equivalent to the DFA described by the figure below:

2. (a) Construct a Moore machine equivalent to the Mealy machine given by 5

Present State		Next	Next State		
he NDFA	Input	a = 0	Input	a = 1	
given by	State	Output	State	Output	
$\rightarrow q_1$	q_3	0	q_2	0	
q_2	q_1	1	q_4	0	
q_3	q_2	1	q_1	1	
q_4	q_4	1	q_3	0	

- (b) Given a grammar $G = (\{S, c\}, \{a, b\}, P, S)$ where P consists $S \rightarrow aCa$, $C \rightarrow aCa \mid b$. Find L(G). 3
- (c) Let L be the set of all palindromes over $\{a,b\}$. Construct a grammar generating L. 4
 - Show the Chomsky classification of (d) grammar and define each type with examples. remerating the regular
- Use regular expressions and prove that (1+00*1)+(1+00*1)(0+10*1)*(0+10*1)tree in context free grammar Define leftmost and (1*01+0)1*0 = ation.4
- Consider the transition (b) given in the figure below. Prove that the strings recognized are $(a + a(b + aa)^*b)^*a(b + aa)^*a$ 6

- (c) Construct a DFA with reduced states equivalent to the regular expression 10+(0+11)0*1
- 4. (a) Define pumping lemma for regular sets. Using pumping lemma, show that 3+5=8 $L = \left\{0^{i}1^{i} \mid i \geq 1\right\} \text{ is not regular.}$
- (b) Construct a regular grammar G generating the regular set represented by P = a * b(a+b)*
- (c) Give the formal definition of a derivation tree in context free grammar. Define leftmost and rightmost derivation.

 4+2=6
- 5. (a) What do you mean by ambiguity in a context free grammar ? If G is the grammar $S \rightarrow sbs \mid a$, show that G is ambiguous. 2+5=7
 - (b) Find a reduced grammar equivalent to the grammar G whose productions are $S \rightarrow AB \mid CA, B \rightarrow BC \mid AB, A \rightarrow a, C \rightarrow aB \mid b$

(c) When is a grammar G said to be in Chomsky Normal Form (CNF)? Reduce the following grammar G to CNF. G is defined by the productions

$$S \rightarrow aAD$$

$$A \rightarrow aB \mid bAB$$

$$B \rightarrow b$$

$$D \rightarrow d$$

3+5=8

6. (a) Define pumping lemma for context free languages. Use pumping lemma to show that

 $L = \left\{ a^n b^n c^n \mid n \ge 1 \right\} \text{ is not context free.}$

- What do you mean by pushdown automata (PDA)? Construct a pda A accepting $L = \left\{ wcw^T \mid w \in \{a,b\}^* \right\}$ by final state.
 - (c) Define a linear bounded automata.

7. (a) M is a Turing machine represented by the transition system given below. Obtain the computation sequence of M for processing the input string 0011.

(b) Consider the Turing Machine M described by the transition table given below.

Describe the processing of (a) 011
(b) 0011 (c) 001 using IDS.

Present State	Tape Symbol					
	0	1	x	y	b	
$\rightarrow q_1$	xRq_2	mar >	7 (1967)	1939113 00 1	bRq_5	
q_2	$0Rq_2$	yLq_3		yRq_2		
q_3	$0Lq_4$	bound	xRq_5	yLq ₃		
q_4	$0Lq_4$		xRq_1	mar equi		
q_5				$yxRq_5$	bRq_6	
96						

- (c) Design a Turing Machine to recognize all strings consisting of an even number of 1's.
- (d) What do you mean by a recursive language?

full marks he the questions.