SELEGIS SALLO bas TEENIS 53 (EC-401) DGEL

## 2015

## DIGITAL ELECTRONICS

Paper: EC 401

Full Marks: 100

noiseorges Time: Three hours [quil [6]

## The figures in the margin indicate full marks for the questions.

Answer any five questions.

| 1. (a) | Why are NAND and NOR gates called universal gates?                      |
|--------|-------------------------------------------------------------------------|
| (b)    | What are the basic operations in Boolean algebra?                       |
| (c)    | Why is a demultiplexer called a distributor?                            |
| (d)    | How does a J-K flip flop differ from an S-R flip flop in its operation? |
| (e)    | What do you mean by an invalid (illegal)                                |

state? Give examples.

- (f) What do you mean by toggling?
- (g) What are PRESET and CLEAR inputs?
  - (h) Write the procedure to simplify the Boolean expressions using K-maps.
- 2. (a) Implement a full-adder using two 4:1 multiplexer. 5
  - (b) Implement the following expression using a single 8:1 multiplexer

$$Y (A, B, C, D) = \sum m(0, 2, 3, 6, 8, 9, 12, 14)$$

(c) Draw the simplest possible logic diagram that implements the output of the logic diagrams shown below:

5+5=10

5



Fig 1(c)



3. (a) What is a comparator? Design a 2-bit. comparator using logic gates.

2+8=10

(b) Minimize the following Boolean functions and implement it using basic gates only.

(i) 
$$Y(A,B,C,D) = \sum m(1,3,5,8,9,11,15) + d(2,13)$$

bus A.J. (ii) 
$$f(P, Q, R, S) = \sum m(2, 3, 5, 13, 14)$$

4. (a) Draw a neat circuit diagram of clocked J-K flip-flop using NAND gates. Give its truth table and explain race around condition.

- (b) Explain how a J-K flip-flop is converted into S-R flip-flop and T flip-flop. 10
- 5. (a) Find the outputs of the given logic circuit.



Fig. 5(a) logic circuit

- oles (b) Design and implement a Mod-5 synchronous counter using J-K flip-flop.
  - (c) Design a circuit to generate the sequence  $0\rightarrow2\rightarrow5\rightarrow4\rightarrow7\rightarrow3$ .
- 6. (a) Draw the Block diagram of PLA and implement a full adder circuit using PLA having three inputs eight product terms and two outputs.
- (b) Design a 3 bits Binary to Gray code converter using a suitable PLA. 10

- 7. (a) Make the excitation tables of J-K, S-R and T flip-flops.
  - (b) Explain the functional diagram of a 2K×8 memory chip. 6
  - (c) Define the following parameters of logic families 2×4=8

Why is a devinitible er valled

- (i) Propagation delay
- (ii) Fanout
- (iii) Noise margin
- (iv) Figure of merit.