53 (IT 303) DLDN

2015

DIGITAL LOGIC DESIGN

Paper: IT 303 (Back)

Full Marks: 100

Time: Three hours

The figures in the margin indicate full marks for the questions.

Answer **any five** questions.

- 1. (a) Convert the following
 - (i) (56)₈ to binary
 - (ii) (15)₁₆ to binary
 - (iii) $(25)_{10}$ to binary
 - (iv) (012)₁₀ to octal
 - (v) $(F_2)_{16}$ to Decimal

(b) Simplify the following using boolean algebra: 2×5=10

(i) xy + x'

5

(ii)
$$(x+x')(y+y)(z\cdot\overline{z})$$
 to reduce the form

(iii)
$$\overline{a+b}$$
 $(\overline{a}\cdot b)$

(iv)
$$a + abc$$

(v)
$$x(x+y)(x+\overline{y})$$

(c) Prove that

(i)
$$\overline{a \cdot b} = \overline{a} + \overline{b}$$

(ii)
$$\overline{a+b} = \overline{a} \cdot \overline{b}$$

5

2. (a) Draw the logic circuit of below boolean function using basic gates: 2+2+3=7

(i)
$$Y = (a+b)(c+d)$$

(ii)
$$a'b' + (c+d)xy$$

(iii)
$$Y = a + b'c + d'e(f + g)$$

(b) Using only nand gate implement the below boolean function

$$Y = ab + bc + cd 4$$

(c) Starting from block diagram and truth table design a 2 to 4 Decoder Circuit.

6

	Adder. Spiles golf gill spile 3
3	block.
3. (a)	Design a Half adder circuit, 5
(b) 3+5=8	Write down the function table of a 8:1 multiplexer.
(c) 1 10 ON	Write down the truth table of a 4 to 2 encoder.
(d)	Draw the block diagram of a 3 bit parallel adder.
(e)	Write down whether the below statements are true / false.
VD gate	(i) It both inputs are logic 1 to a 2 input X-OR gate then the output is going to be logic 1.
	(ii) BCD code of Decimal 56 is 101110
	(iii) Excess-3 code of 21 is 00110010.
	(iv) S-R latch is a combinational circuit.
metions 4+5=9.	(v) Multiplexer is a data selector circuit.
:12,13)	(i) $f(w,x,y,z) = \sum m(0,2,4,9,10,11)$
	Explain the truth table of a J-K latch.

53 (IT 303) DLDN/G

OVMODIC (SO Contd.

(d) Full 3	Draw the Block diagram of a Master Slave flip flop using D-latch as basic block.
c (c)	Draw the circuit of a S-R latch with enable and explain it's operation. 3+5=8
E (d)	 (i) 1 to 4 De-multiplexer, No. of control input needed is (ii) D latch, if input is logic 1 output
mid I to a 2	is going to be (iii) Half subtractor, inputs are 1, 1 then the output is (iv) If both the inputs of a AND gate are logic 1 then output is
5. (a) (b) (c)	Design a Full subtractor circuit. 8 Perform subtraction using 2's complement method 1101-0100. 3 Simplify the below boolean functions using <i>K</i> -map method. 4+5=9
	$f(w,x,y,z) = \sum m(0, 2, 4, 9, 10, 11, 12, 13)$ $f(w, x, y, z) = w'x'y'z' + w'x'yz + wx'y'z + wxyz' + wxyz + w'x'y'z + w'xyz'$ $4+5=9$

- 6. (a) Explain the operation of a 4 bit register using timing diagram, block diagram etc.
 - (b) Describe the operation of a 2 bit ripple counter with timing diagram, block diagram etc.
- 7. (a) Design a 3 bit counter using D-FF.
 - (b) Write down the excitation table of a J-K FF.
 - (c) What are the main differences between combinational and sequential circuits?
 - (d) How is excitation table different from that truth table?