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ABSTRACT

ln today's Data c€nt€r oten employ SDN that are layered in most cases As SDN provides

huge wins in Data c€trter, it ls mostly used in this area Data center consists of vast network

topology, and due to this it faces problern in tacking out the shortest path ln our

implementation we have considered the well-known shortest path algorithm' Bellmanford

algorithm considering their nodes weights for a gaph wrder SDN' We use this

inrplementation to trac€ out the short€st path and transfer packets from source to destination

wrth the hetp of mininet tools and POX controller' Thus we obtain good result in most of the

topologies like FAT topolory, Abilare topology' and simple tre€ topolory by comparing their

bmdwidth , using IP€rf tool'
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Chapter I

Introduction:

Software-defined networking (SDN) is an approach to computer networking that allows

administrators to manage network services through abstraction of lowerJevel

ionality. sDN providers offer a wide selection of competing architectures, but at its most

the SDN method c€ntralizes control ofthe network by separating the control logic to off-

computer resources. All SDN models have some version of an SDN Controller, as well as

APIs and northbound APIs.

sDN (Software-Defined Networks) were designed for the purpose that smart open-source

controllers control dumb low'cost switches. However, controllability and

ofSDN are restricted by the lack of information organization and division. As a result,

logics are often far more complex than they are supposed to be. In this poster, we

a new way of organizing topologies and information of OpenFlow networks in data

, and present a management model that divides network views and information

and orderly to reduce management complexity. In approach, regional networks on

layers will be aggregated and viewed as single switches to upper layers. Information of

will be divided into three parts, which are, respectively, managed by network

regional controllers and tenants. To achieve this, established a mechanism

ing which parts a massage should be sent to. In data centre networks, aggTegation of

means that a regional network will decide its own inside logic and be seen as a single

whose ports are edge ports of the regional network to upper layers. SDN is an emerging

that is dynamic, manageable, cost-effective, and adaptable, making it ideal for the

dynamic nature of today's applications. This architecture decouples the network

@ntrol and forwarding functions enabling the network control to become directly programmable

the underlying infrastructure to be abstracted for applications and network services. The

protocol is a foundational element for building.



Objcctives:

SDN (Software-Defined Networks) were designed for the purpose that smart open-source

controllers control dumb low-cost switches. However, controllability and

of SDN are restricted by the lack of information organization and division. As a result,

logics are often far more complex than they are supposed to be. Data centers were

designed to physically separate traditional computing elements (e.g. PC servers), their

storage, and the networks that interconnected them with client users. The computing

that existed in these types of data centers became focused on specific server firnctionality

applications such as mail servers, database servers, or other such widely used

itv in order to clients. Previously, those functions which were executed on the often

(or more) of desktops within an enterprise organization were handled by departrnental

that provided services dedicated only to local use. As time went on, the departmental

migrated into the data c€nter for a variety of reasons first and foremost, to facilitate ease

nanagement, and second, to enable sharing among the enterprise's users. Our main objective

this implementation is to trace out the shortest path ofa topology.



Chapter 2

Overview:

In recent years, Data volume has been increasing at rapid speed which dnves the creation

largeDataCenterhostingabroadrangeofservicessuchasWebsearch'e-commerce'storage

ckup,largescientificapplications,videostreaming'dataanalyticsandsocialnetworkingln

large Data Centers there are tens of thousands of servers spread over hundreds ofracks with

of peta bytes of storage interconnected by high capacity network infrastructure' Failures

tve severe impact in a large c€nter with huge number of server- and network- elements and

ivedatastorage.Therefore'itiscriticallyimportanttodevelopsolutionstoensurehigh

itv of resources. Data availability is a major challenge faced by today's Data centers As

availability becomes a critically important requirement' many businesses use increased

of resources to ensure continuous operations. Maintaining unintemrptible access to all

Centre applications is highly desirable As a result' Data Centers need a range of business

solutions, fiom simple tape backup and remote replication to synchronous mllronng

mirrored distributed Data centers. proactive replication is a key strategy coupled with

ing for data protection. Data replication is an effective approach for achieving high data

ilitv and durability in Data Centers' Data replication is a technique designed for

icatins data at two or more storage nodes attached to different racks in a Data Centre Such

ro<lundancyensuresatlgastonecopyofdataisavailableforcontinuousoperationintheeventof

a rack switch failure or rack power |ailure. However, the design choice of data rep|ication is

complicatedbykeepingthecopiesascloselysynchronizedaspossibleandusingaslittlenetwork

bndwidthaspossible'Synchronousupdateofallcopiesprovideshighresiliencetodatalossbut

has poor wite performance and results in high network cost SDN is a framework that increases

theflexibilityofthenetworkthroughseparationofcontrolanddataplanes'Thisseparatlon

makesthenetworkswitchingandroutingdevicessimplerand|essexpensive.Thecontrolplane

muld be implemented tn a general purpose commodity server' This server as a centralized

Controller takes care of routing and other policies according to which the network devices

function.



Controllers: T he brains of the nelrvork. St)N Clontrollers ol-fer a ccntralized view of the overall

rctwork, and enable netrvcirk adminislrators to dictate to the underl,ving systems (like srvitches

and routers) how the lbrrvarding plane should handle network lraffic.

Southbound APIs: SDN uses soulhbound APIs to relay information to the switches and routers

belorv. OpenFlorv, consi<Jered the tlrst slandard in SDN. was the original southbound API and

rcmains as one ofthe mosl collnlon protocols. Despite some cgnsidering OpenFlow and SI)N to

be one in the same, OpenFlow is mcrely one ptece o{'the bigger SDN landscape.

Northbound APls: SDN uses northbound APls to communicate rvith the applications and

business logic above. l'hese help netrvork adminislralors to programmaticalll' shape traffic and

rleploy services. [2 ]
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Data Plane and Control Plane

I

Plane (DP):

The data plane (sometimes known as the user plane, forwarding plane, carrier plane or

plane) is the part of a network that canies user traffic. The data plane, the control plane

the management plane are the three basic components of telecommunications architecture.

control plane and management plane sewe the data plane, which bears the traffic that the

exists to carry. The data plane enables data transfer to and from clients, handling

iple conversations through multiple protocols, and manages conversations with remote

Data plane traffic travels tkough routers, rather than to or from them.

conventional networking, all three planes are implemented in the firmware of routers and

Software-defined networking (SDN) decouples the data and control planes and

the control plane in software instead, which enables programmatic access to make

administration much more flexible. Moving the control plane to software allows

access and administration. A network administrator can shape traftic from a centralized

console without having to touch individual switches. The administrator can change any

switch's rules when necessary prioritizing, de-prioritizing or even blocking specific

of packets with a very gtranular level ofcontrol. [5]

Plane (CP):

control plane is the part of a network that carries signaling trafiic and is responsible fior

Control packets originate from or are destined for a router. Functions of the control

include system configuration and management. [6] In routing, the control plane is the part

the router architecture that is concemed with drawing the network map or the information in a

augmented) routing table that defines what to do with incoming packets. Control plane

such as participating in routing protocols, fun in the architectural control element. In

cases, the routing table contains a list of destination addresses and the outgoing interface(s)

iated with them. Control plane logic also can define ceilain packets to be discarded, as well

preferential treatment of certain packets for which a high quality of service is defined by such

as difTerentiated services. Depending on the specific router implementation, there



be a separate forwarding information base that is populated (i.e., loaded) by the control

but used by the forwarding plane to look up packets, at very high speed, and decide how

them.[7]

Itrol plane and data plane separrtion:

plane: Logic control forwarding plane.e.g. routing protocols, firewall configuration.

plane: forwards traffrc according to configuration by control plane. e.g.: IP forwarding,

switching.

leprrrte?

Independent evolution and development. Especially software control of network.

Control from a single highJevel software program. Easier to reason and debug'

does it help?

Routing

Enterprise networks. SecuritY

Research networks. Coexistence with production networks'

Data centers. vM migration. e.g.: Yahoo has 20,000 hosts,400,000 vMs. want sub second

\1lr{ migrations. Program switches from a central server, so that forwarding follows

migation.

e.g. AT&T filtering DoS attacks. IRSCP (commercialized RCP) will insert a null route to

filt€r DoS at network edge.

for separation:

: Control element responsible for thousands of forwarding elements'

and security: What if a controller fails or is compromised'



for control and data separation:

examples:

New routing services in the wide area. Maintenance, egtess selection, security.

Data centers. Cost, management.

Wide area.

are a few constrained ways to sel inter domain routing policy: BGP.

knobs, no external knowledge (time ofday, reputation of route, etc.)

ofBGP route controller updates forwarding table.

l: Maintenance dry-out. Planned maintenance of an edge router.Tell ingr€ss routers to

the router with pending maintenance. Too difficult to do in existing networks, e.g. buy

OSPF.

2: Customer controlled egress router. Customer selects data center they want to use.

in existing networks, as routing uses destination prefix.

3: Better BGP security. Oflline we can determine reputation of a route. But this cant be

into BGP route selection. OffJine anomalv detection. Prefer familiar routes over

routes. RCP tells routers to avoid odd routes.

4: Data Centre, addressing,Layer 2 addressing: less configuration, bad scaling. Layer 3

ing: use existing routing protocols, good scaling, but high administration overhead. Use

2 addressing, but to make the addresses topology-specific rather than topology-

MAC addresses depend where they are in the topology.mHosts dont know they

MAC address re-assigned, so how is ARP done? Destination host won't respond.A fabric

will intercept ARPs, it then replies with the topology-dependent Pseudo-MAC

Switches re-wlite MAC addresses at network edge to hosts.



Examples:

access control

ity and migation

load balancing

virtualization

ient networking

ive traffic monitoring

ofseparating control and deta planes:

, reliability, consistenoy, Approaches in RCP and ONDK.

in RCP: RCP must stores routes and compute routing decisions for all routers in the

That's a lot to do at a single node. Strategies to reduce this are:

redundancy: store a single copy of each route to avoid redundant computation.

lookups: maintain indexes to identifu affected routers. Then RCP computes routes

for routers affected by a ohange.

Only performs inter-domain (BGP) routing.

ity in ON[X: Partitioning. Keep ffack of subsets of the network state. Then apply

measures to ensure consistency between the partitions. Choice of strong and weak

models to select correctness versus computation fiadeoff

ion: A hierarchy of controllers. ONIX controllers for departments or buildings, then a

for the domain.



it

ity in RCP: Replicate. RCP has a hot spare. Each replica has its own feed of routes,

ing exactly same inputs, running exact same algorithms, so output should be the same. So

for consistency protocol.

: But if different RCPs see difference routes then they will have different outputs. If

two replicas are inconsistent then they can install a routing loop.

to guarantee consistent inputs: for RCP that's easy as the IGP passes the full link-state to

. So RCP should compute next-hops only ftrr routers it is connected to. .For example, one

in Dartitioned network. Only use candidate routes from partition I to set next-hops m

l.For example, two RCP in partitioned network. since the two RCPs have the same data

each partition from the IGP then they give the same output for each partition'

in ONIX: Network failures. oNIX leaves it to applications to detect and recover.

ity to ONIX: Solve using typical network practices, such as multipath.

failure. Replication and distributed coordination protocol.

issues:

Scalability. Making decisions for many network elements.

Reliability. Correct operation under failure of the network or controller'

consistency. Ensure consistency between controller replicas, especially in partitioned

Hierarohy

Aggregatlon

State management and disfiibution

controller uses a set oftactics from those available. [8]



was originally imagined and implemented as part of network research at Stanford

. lts original focus was to allow the creation of experimental protocols on campus

that could be used for research and experimentation. Prior to that, universities had to

their own experimentation platforms from scratch. What evolved from this initial kernel of

was a view that OpenFlow could replace the functionality oflayer 2 and layer 3 protocols

in commercial switches and routers. This approach is commonly referred to as the

slate proposition. Later, in 201 la non-profit consortium called the Open Networking

(ONF) was formed by a group of service providers to commercialize, Standardize,

promote the use of OpenFlow in production networks. The key components of the

model, as shown in Figure 3- 1, have become at least part of the common definition of

mainly, Separation of the control and data planes (in the case ofthe ONF, the control plane

on a logically centralized controller system).Using a standardized protocol between

and an agent on the network. Element for instantiating state (in the case of OpenFlow'

state). Providing network programmability from a cenhalized view via a modern,

API.

2.3-1. OpenFlow architecture (with the view that some ofthe control plane apps will ride

TOP ofthe controller-emulating the behavior oftraditional control plane apps).



Openllow is a set of protocols and an API, not a product per se or even a single t-eature

a product.The OpenFlow protocol uses a standardized instruction set, through which any

controller can send a common set of instructions to any OpenFlow Switch regardless

Switching

Controller

OpenFlow
Protocol

OpenFlowSwitch

2.3-2:An OpenFlow switch communicates with a controller using the OpenFlow protocol.

EH

11



Components:

ooenFlow Switch consists of one or more flow tables and a group table, which perform

lookups and forwarding, and an OpenFlow channel to an extemal controller. The

manages the switch via the OpenFlow protocol. Using this plotocol, the controller can

update, and delete flow entries, both reactively (in response to packets) and proactively.

flow table in the switch contains a set of flow entries; each flow entry consists of match

counters, and a set of instructions to apply to matching packets.

starts at the first flow table and may continue to additional flow tables. Flow entries

packets in priority order, with the first matching entry in each table being used. If a

entry is found, the instructions associated with the specific flow entry are executed. lf
nrtch is found in a flow table, the outcome depends on switch configuration: the packet may

fOnvarded to the controller over the OpenFlow channel, dropped, or may continue to the next

table.

associated rvith each florv entry describe packet forwarding, packet modification,

table processing, and pipeline processing. Pipeline processing instructions allow packets to

sent to subsequent tables for further processing and allow information, in the form of

,8data. to be communicated between tables. Table pipeline processing stops when the

ion set associated with a matching flow entry does not specify a next table; at this point

pocket is usually modified and forwarded.

Tables:

section describes the components offlow tables and group tables, along with the mechanics

natching and action handling

t2



tr'low Table:

table consists of flow entries.

2.3-l: Main components of a flow entry in a flow table.

flow table entry contains:

Mrtch fields: to match against packets. These consist ofthe ingress port and packet headers,

urd optionally metadata specified by a previous table.

Counters: to update for matching packets

lnrtructions:to modifu the action set or pipeline processing'

Group Table

group table consists of gtoup entries. The ability for a flow to point to a group enables

to represent additional methods of fonvarding.

group entry contalns:

2.3-2: A group entry consists of a group identifier, a goup type, counters' action buckets

a list ol

Group identifier'. a32bit unsigned integer uniquely identifying the group

Group type: to determine group semantlcs.

Counters: updated when packets are processed by a group

Action buckets. an ordered list of action buckets, where each action bucket contains a set of

lctions to execute and associated parameters.

13
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Counters may be maintained for each table, flow, port, queue, group, and bucket.

counters may be implemented in software and maintained by polling

counters with more limited ranges. Duration refers to the amount of time the flow has

installed in the switch. The Receive Errors field is the total of all receive and collision

as well as any others not called out in the table. Counters wrap around with no overflow

. Ifa specific numeric counter is not available in the switch, its value should be set to -1.

Each flow entry contains a set of instructions that are executed when a packet matches

entry. These instructions result in changes to the packet, action set and/or pipeline

ing. Supported instructions include:

Apply-Actions action(s): Applies the specific action(s) immediately, without any change to

the Action Sa. This instruction may be used to modifu the packet between two tables or to

execute multiple actions of the same type.

Clear-Actions: Clears all the actions in the action set immediately.

WriteActions action(s): Merges the specified action(s) into the current action set. If an

action ofthe given type exists in the cunent set, overwrite it, otherwise add it.

WriteMetadata metadata / mask: Writes the masked metadata value into the metadata

field. The mask specifies which bits of the metadata register should be modified.

Goto.Table next-table-id: Indicates the next table in the processing pipeline. The table-id

must be greater than the current table-id. The flows of last table of the pipeline cannot

include this instruction.

An action set is associated with each paoket. This set is empty by default. A flow entry

modif, the action set using a Write-Action instruction or a Clear-Action instruction

iated with a particular match. The action set is carried between flow tables. When an

set doesn't contain a Goto-Table instruction, pipeline processing stops and the actions

the action set are executed. The actions in an action set are applied in the order specified

L4



, regardless of the order that they were added to the s€t. If an action set contains a group

the actions in the appropriate action bucket of the group are also applied in the order

below. The switch may support arbitrary action execution order through the action list
Apply-Actions instruction.

TTL inwards: apply copy TTL inward actions to the packet.

apply all tag pop actions to the packet.

: apply all tag push actions to the packet.

TTL outwards: apply copy TTL outwards action to the packet.

TTL: apply decrement TTL action to the packet.

apply all set-field actions to the packet.

: apply all QoS actions, such as set queue to the packet.

: if a group action is specified, apply the actions of the relevant group bucket(s) in the

specified by this list.

if no group action is specified, forward the packet on the port specified by the output

Channel:

openFlow channel is the interface that connects each openflow switch to a controller.

this interface, the controller configures and manages the switch, receives events from

switch, and sends packets out the switch. Between the data path and the openllow channel,

interfac€ is implementation-specific, however all openFlow channel messages must be

according to the OpenFlow protocol. The OpenFlow channel is usually encrypted

TLS, but may be run directly over TCP.

Protocol:

The openFlow protocol is a standardized protocol for interacting with the forwarding

of switches liom multiple vendors, This provide us a way to control the behavior of
throughout our network dynamically and programmatically. OpenFlow is a key

in many SDN solutions. The OpenFlow protocol supports three message types,

-to-switch, asynchronous, and symmetric, each with multiple sub+ypes. Controller-to-
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messages are initiated by the controller and used to directly manage or inspect the state of

switch. Asynchronous messages are initiated by the switch and used to update the controller

events and changes to the switch state. Symmetric messages are initiated by either the

or the controller and sent without solicitation. The message types used by OpenFlow are

below.

messages are initiated by the controller and may or may not requlre a response

the switch.

: The controller may request the capabilities of a switch by sending a features request;

switch must respond with a features reply that specifies the capabilities of the switch. This ts

performed upon establishm€nt ofthe OpenFlow channel.

: The controller is able to set and query configuration pa.rameters in the switch.

switch only responds to a query from the controller.

: Modifo-modification messages are sent by the controller to manage state

the switches. Their primary purpose is to add/delete and modifu flows/groups in the

tables and to set switch port properties.

: Read-State messages are used by the controller to collect statistics from the switch.

These are used by the controller to send packets out of a specified port on the

and to forward packets received via Packet-in messages. Packet-out messages must

a fi.rll packet or a buffer lD referencing a packet stored in the switch. The message must

contain a list of actions to be applied in the order they are specifie4 an empty action list

the packct.

Barrier request/reply messages are used by the controller to ensure message

have been met or to receive notifications for completed operalions.

lb
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: Asynchronous messages are sent without the controller soliciting them from a

Switches send asynchronous messages to the controller to denote a packet arrival, switch

change, or enor. The four main asynchronous message types are described below.

: For all packets that do not have a matching flow entry, a packet-in event may be sent

controller (depending on the table configuration). For all packets forwarded to the port, a

event is always sent to the controller. If the switch has suflicient memory to buffer

that are sent to the controller, the packet-in events contain some fraction of the packet

(by default 128 bytes) and a buffer ID to be used by the controller when it is ready for the

to forward the packet. Switches that do not support intemal buffering (or have run out of

buffering) must send the full packet to the controller as part of the event. Buffered

rvill usually be processed via a Packet-out message from the controller, or automatically

after some time.

: When a tlow entry is added to the switch by a flow modify message, an idle

value indicates when the entry should be removed due to a lack of activity, as rvell as a

timeout value that indicates when the entry should be removed, regardless of activity.

flow modify message also specifies whether the switch should send a flow removed message

the controller when the flow expires. Flow delete requests should generate florv removed

for any flows with the OFPFF-SEND-FLOW-REM flag set.

The swrtch is expected to send port-status messages to th€ controller as port

ion statc changes. These evcnts include change in port status cvents (for example, if it

brought down directly by a user).

: The switch is able to noti! the controller of problems using enor messages.

Symmetric: Symmetric messages are sent without solicitation, in either direction.

: Hello messages are exchanged between the switch and controller upon connection startup.



Echo requesVreply messages can be sent from either the switch or the controller, and must

an echo reply. They can be used to measue the latency or bandwidth of a controller-

oonnection, as well as veri$ its aliveness.

: Experimenter messages provide a standard way for OpenFlow switches to offer

functionality within the OpenFlow message type space. This is a staging area for

meant for fufure OpenFlow revtstons.

demonstration of an OpenFlow network:

lrrto a./-St .rho

i' H"t Hz .,;'"'(^Bn't 
UflPt

Figure 2.3-3: A simplo OpenFlow set-up

is launched which would look like the above figwe 2.3-3. It would have an Open

kemel switch Sl, A OpenFlow reference controller C0 and four emulated host Hl, H2' H3

simple web server is launched in H4 and generate an http request from Hl.
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is used to emulats this network

Figurc 2.3-4. Console shorving the topoh-rgy

Figure 2.3-4 shorvs the mininet console which consist of sudo mn ^topo:single, 4 commands

that show the topology. The mininet dump Command rvould show the various nodes. Controller

is not been specitied therefore mininet would run the OpenFlow reference controller C0.

Iigure 2.3-5' Console shorving the launching of http request frorn I I I to I 14.
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In the figure 2.3- 5 A simple python web server is launched in H4 by h4 python -rn

SimpleHTTPServer 80 &command.Now a sirnple http request is generated frorn Hl to H4 by hl

weet 10.0.0.4 command.

c0

s1

erhl
eth2./ erh3 \

X
YN (port 80)

eth0

H1

eth0

H2

eth0

H3

eth0

H4

t't
l\- |t\- I

t. - |

Figure 2.3-6: SYN packet passed from III to srvitch Sl

Stnce it is a TCP conversation therefore it always start wrth a SYN message as shown in

figure 2.3-6.As it is an OpenFlow switch,Sl would check its own local OpenFlow tables. Since it

is the first packet for OpcnFlorv, it probably do not have any flow entry matching this packet,

this is called the table-miss. Usually there are no matching flows the default action is to send this

packet to the controller as shown in tlgure 2.3- 7 .
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c0

x
SYt{ (pon

Euffet lD . 250

E0l

Figure 2.3-7: Packet-in message produced by switch Sl forwarded to Controller C0

Sl would send a Packet-in message to CO.This Packet-in message would encapsulate the

original TCP SYN message. It may include the entire packet or might include the entire packet

headers and references a buffer id. When using a buffer id, the switch buffers the entire packet so

thst the controller later instruct the switch what to do with the stored packet by referencing the

buffer id. Now the controller get the Packet-in message. Typically a couple ofthings can happen

here. The controller can send out a Packet-out message or Flow-modification message back to

the switch.
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c0

X oR sutt rlD.290
(pon 80)

Actign . Fgrward port 4

€rh0

H1

2.3-8: Packet-out message generated from Controller C0 forwarded to switch Sl

In case of Packet-out message, it is the instruction from controller to the switch what to

do with the specific packet. The Packelout message would contain a complete encapsulated

mes$rge or it might reference the buffer id of the packet to the switch is &awn. In the figure 2.3-

t the controller instruct the switch Sl to send the packet referenced with buffer id-250 which was

the TCP SYN message from Hl out of its port 4 toward H4.Altematively, the controller might

also send the Flow-modification message which instruct the switch to install a new flow-entry in

its flow table. Flow entries let the switch know what to with futue similar packet arrives at the

switch based on matching fields and masks. In the figure (2.3-9), the controller says effectively

6at any TCP port 80 request from IP address and MAC address of Hl to the IP address and

MAC address ofH4, send all ofthose out ofport 4. The flow modification message also contain

a buffer i4 this will tell the switch that the first packet it had buffered i.e. number-250, release

that packet from the buffer and apply the Action to the message. In the figure 2.3-9 consist ofa
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and single Action but many set of Action are possible. For example Action can include

ing multiple headers like lps, MACs, and TCP ports. We can pOp, pUSH or SWAp

labels. we also take Actions like flooding out all ports, dropping the packets or telling

switch to send the

Figure 2.3'9: Flow-modification message generated from switch Sl forwarded to controller C0.

Matching packet to the controller. We can also tell the switch to use its non-OpenFlow

pcket processing. The Flow-modification message also shows two kind of timeouts. The

timeout says how long to catch the flow entries. The Flow-modification message shows two

timeouts:

Idle Timeouts: The Idle timeout is 20 which means if there won't be any matching http packets

rcquest for 20sec, remove this flow entry.

M.rch & M8l
Sufler l0 . 250

Fbw.MOD ldl. Tiri.orrr . 20

8.rd Iimeorrt.60
Artbn , to.rard port

sYN {pod ml
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Timeouts: The Hard timeout of 60 means, no matter if there are alike matching packets or

just remov€ this flow entry. Another important component is the priority. Priority is required

sort the various flow entries.

c0

x
sYil (pon

Butfer lD . 25{)

E0)

eth0

H1

Figure 2.3- | 0: SYN message received by II4

the Flow-modification message resultant a new flow entry in switch Sl shown in figure 2 3-10

and since it references a bulTer id, it also results in original TCP SYN message packet can be

fonvarded out of port 4just like the action says to do. H4 receives the packet from Hl.

Match & Mask

8uffer lD = 250

Flow-MOD tdlelimeout-2o
Hard Timeout = 60

Action " forwa]d port

Flow-Et{IRY (Hr->H4 Port 80}
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co

etM

H1

Figure 2.3 -11: H4 generates SyN/ACK message, received by switch Sl and Sl
generates Packet-in message.

In figure 2.3-l I H4 replies the TCP sYN message through syN/ACK message. The SyN/ACK
message arrives to the switch S | .The switch S I has no specific Flow entries matching this packet

at any of its flow table. Again this is a table-miss. So sl would encapsulate the reply into a
Packet-in message and sends it to the controller. It may contain the entire packet in an Openllow
Packet-in message or might be some headers from the packet along with the buffer id reference

number.In this case it is 25l.The sDN controller c0 would typically send a packet-out or a
Flow-modification message. The Packet-out message would tell the switch what to do with the

specific packet. Again the controller might send the entire packet in one sent encapsulating

within the Packet-out message or might references a buffer id stored in the switch saying to

release the packet stored in buffer id 251 though proceeding the Actions specified in the packet-

out message shown in figure 2.3-12.

lO - 291

P.cl(.t-l

[] 
Euffer

SYN,/ACK



x
sY /acx

OR 8ufier lO - 251

Actlon = Forwrrd port I

atho

H1

2.3-12: Controller C0 generates Packet-out message and send it to switch Sl

Again the controller might send a Flow-moditication message specifuing what to do with

6e flrture packets matching specified fields. It may also have a buffer id to rel'erence the

cunently buffer packet on the switch. It also have the timeouts, Actions and priority fields shown

in fieure 2.3-13.

rD - 251

Pmk t-lN

x surtur

sYit/acK

26



P.ck t-tNx gutf.r lO - 251

aut|er lD - 251
Flow-MOO tdlrTimrour " 20

8..dllm.oui - @
A.tlon - fo.wa.d Dort

Flow-ENrnV{H4->xr rrpbt 51 Flow.€tlTRY (t{l->lla Fo.t tol

Figure 2.3-13: Flow-modification message is generated by controller C0 which is passed to H1

Thus through portl the Hl receives the SYIVACK message. The end results is simply some flow

cnfies had cast on the OpenFlow switch Sl as shown in figure 2.3-l4.This means that the rest of

lhe conversation between Hl and H4 won't have to go to the controller since the switch have the

f,ow entry and flow tables what to with the similar kind of packets. Thus it's the completion of

the TCP handshake go tbough as well as the http request and the http reply go through the

switch s l without any need to talk to the controller c0 .

2.4 Data Center Concept and Constructs:

Prior to the existence of data centers, computing, storage' and the networks that

interconnected them existed on the desktop PCs of enterprise users. As data storage grew, along

with the need for collaboration, departmental servers were installed and served this purpose.

However, they provided services that were dedicated only to local or limited use. As time went

on, the departmental serverc could not handle the gowing load or the widespread collaborative

rceds of users and were migrated into a more centralized data center. Data centers facilitated in

case of hardware and software management and maintenance and could be mor€ easily shared by

all ofthe enterprise's users. Modern data center were originally created to physically separate
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computing elements (e.g., PC servers), their associated storage (i.e., storage area

or SANs) and the networks that interconnected them with client users. The computing

that existed in these types of data centers became focused on specific server functionality,

as running applications that included mail servers, database servers, or other enterprise IT

data centers were originally created to physically separate traditional computing

(e.g., PC servers), their associated storage (i.e., storage area networks or SANs) and the

that interconnected them with client users. The computing power that existed in these

types of data center became focused on specific server functionality, such as running applications

lhat included mail servers, database servers, or otler enterprise IT applications. [ 10]

A Modern drte center:

With further advances and increases in memory, computing, and storage, data center

servers were increasingly capable ofexecuting a variety of operating systems simultaneously in a

virtual environment. Operating systems such as Windows Server that previously occupied an

eirtire bare metal machine were now executed as virtual machines, each running whatever

rpplications client users demanded. Moreover, network administrators now had the option to

locate that computing power based not on physical machine availability. They could instead

dyramically grow and shrink it as resource demands changed. Thus began the age of elastic

computing. Within the elastic computing environment, operations departments were able to

move servers to any physical data center location simply by pausing a virtual machine and

ooplirng a file across their network to a new physical computing location (i.e. server).They could

wen spin up new virtual machines simply by cloning the same file and telling the hy'pervisor,

either locally or on some distant machine, to execute it as a new instance of the same service,

thus expanding that resource. If the resource was no longer needed or demand waned, server

instances could be shut down or even just deleted. This tlexibility allowed network operators to

start optimizing the data center resouce location and thus utilization based on metrics such as

power and cooling. By using bin packing techniques, virtual machines could be tightly mapped

onto physical machines, thus optimizing for different characteristics such as
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locality of netu'ork between these servcrs, or as a meitns ofevcn shutting dou'n unused physical

machines lo save on power or cooling. In thct. this is holv many modcrn data centers optlmlze

for virtual machinc placemenl bccause thcir dorninating cost fhctors are power and cooling. In

these cases, an operator can lLlrn down (or ofl) cooling an entire portion of a data center.

Similarly, an opcrator c:oulcl tnovs or clvnanricalll' crpand conrputing, storage. or network

resources b-v geographical dcmand. Figurc 2.4- | shorvs a urodern data center.

Figurc 2.4-l: A modorn data centsr comprised of computc, storagc, and nettvork rcsources

As rvith all advances in technologl', this nervly discovercd tlexibility in operational deplol'ment

of cornputing. storage. and ne vorktng rssources broughl about a nerv problem: one of

operationai ef-tioiency both in terrns ol' maxinrrzing thc utilization ol storage and colxpuring

porver and in terms of porver and cooling.

As mentioned earlicr, network opgrators began to realize that conrputing power demand in

general irrcleascd o'ver tinre. -fo kecp up with tlris delnand, Il dcpartn'lents would order all the

equipment they predicted would bc necdcd lor the lirllowing ycar. l{owever, once this cquipment

anived and rvas placed in racks, it rvould oonsums power, oooling and space resources - evcn i1'

it rvas not used lbr manv months.

'y'\
, /-^'Zz/
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The three-tiered a rchitecture;

The three-liered architecture is shown in Figure 2.4-2. ln the three-tiered architecture, a

single vM is required to implemenl each of the three layers of the system, but more component

vMs can be spun-up at any time to execute either locally on the same compute server or

remotely in order to expand or contract computing resources. There is still some debate about

how frequently live migration might occur between data centers as a DCI use case. The

reasoning is that in order for any migration to take place, a file copy of the active vM to a new

compute server must be performed, and rvhile a vM is being copied, it cannot be running, or the

file would change out lrom under the copy operation. Hence this operation is becoming less and

less common in practice. Instead, moving to a three-tiered application architecture where the

norm is to creatc and destroy machines is lbr simpler (and safer).

5sS
Cll€nt1 VVAP Handset C||enr2 5

Intranet
\

lntelnet

Pr.i.ntrtlo.r Tt?. I l,v.bservtca

Bustncrs TiGr
Lgqlcal Tler

Oata Ac<et5 Ttea

lF lE Dat'rr* a@
Figure 2.4-2:The three-tiered architecture

Data Centre Interconnect (DCI):

Now that we have introduced the basic concepts ofwhat a data center is and how one can

be built, let's discuss how one or more data centers can be connected. In particular, for

configurations where multiple data centers are required either for geographic diversity, disaster



rccovery, service, or cloud bursting, data centers are interconnected over some form of Wide

Area Network (WAN). This is the case even if data centers are geographically down the sheet

ftom one another; even in these cases, some metro access network is typically used to

interconnect them. A variety of technological options exist that can achieve tbese

interconnections.

In cases where two or more data centers exist, then you must consider how to connect

&ese data centers. For example, a tenant may have arbitrary numbers of virtual machines

residing in each of these different data centers yet desires that they be at least logically

connected. The Data Centre Interconnect (DCI) (see Figure 2.4-3) puts all VlVs of a given tenant

rcross all data centers on the same L2 or L3 underlying tenant network.

E€D tv t{

FH

Figure 2.4-3: Data Centre Interconnect (DCI)

As it tums out, interconnecting data centers is not necessarily a simple thing because

there are a variety of concerns to keep in mind. But before jumping feet first into all the various

ways in rvhich DCI can be implemented, let's first examine some of the requirements of any

good DCI solution, and more importantly, some of its fallacies.
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tr'dlacies of Data Centre Distributed Computing:

when designing a data c€nter and an architecture, or strategy, for interconnecting two or

more data centers, one inevitably needs to list the requirements of the interconnection. These

often start with a variety of assumptions, and we have found that in practice, many of these fall

into a category of things that seem to make sense in theory, but in practice are impossible to

guarantee or assume. These assumptions include the following:

. The network is reliable.

. Latency is zero.

. The network is secure.

. Topology doesn't change.

. There is one administrator.

. Transport cost is zero.

. The network is homogeneous.

At first, these notions may seem quite reasonable, but in practice they are quite diflicult
(or impossible) to achieve. For example, the first four points make assumptions about the

bchnology being employed and the equipment that implements it. No equipment is perfect or

functions flawlessly, and so it is often a safer bet to assume the opposite ofthese first points. In

terms of points four to six, these fall under administrative or personnel issues. All things equal,

once your network is configured, it should continue operating that way until changed. I I l]
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2.5 Area of Implementation:

One example, where SDN can provide huge wins, is in the data centre. A data centre,

typically consists of many racks of servers. And any particular cluster might have, as many as

20,000 servers. Assuming that each one of these servers can run about 200 virtual machines.

That's 400,000 virtual machines in a cluster. A significant problem is provisioning or migrating

these virtual machines in response to varying traffic loads. SDN solves this problem by

programming the switch state from a central database. So supposing, I have two virtual machines

within the data centre that needs to communicate with one another. The forwarding state in the

switches, in the data centre ensures that traffic is forwarded correctly. If we need to provision

additional virtual machines. Or migrate a virtual machine from one server to another in the data

centre, the state in these switches must be updated. Updating the state in this fashion is much

easier to do, from a central controller or a central database, faciliating. This type of Virtual

Machine Migration in the data centre is one of the early killer apps of software-defined

networking. This type of migration is also made easier by the fact that the servers are addressed

with Layer two Addressing. And the entire data centre Looks like a flat layer two topology. What

this means, is that a server can be migrated from one portion ofthe data centre to another without

rcquiring the virtual machine to obtain new addresses. All that needs to happen for forwarding to

work,is the state ofthese switches, Needs to be updated. The task of updating swltch date in this

fashion is very easy to do, when the control data plans are and separate.

2.5.1 Data Centre:

In today's data centers often employ SDNs that are layered in most cases. However,

information overwhelming has been a limitation to SDN deployment. A management model for

data center networks has been presented in which, regional networks on lower layers will be

aggregated and viewed as single switches to upper layers. Management information will be

divided into three parts, which can be seen by network managers, regional controllers and

t€nants, respectively. Multi-tier data center networks (DCN) deploy rigid control and

management platforrns, which are not able to accommodate the ever-growing workload driven

by the increasing demand of high-performance data center (DC) and cloud applications. In



to this, the EC FP7 project LIGHTNESS (Low l,atency and High Throughput Dynamic

Infrastructures for High Performance Datacenter Interconnects) is proposing a new

optical DCN architecture capable of providing dynamic, programmable, and highly

DCN connectivity services while meeting the requirements of new and emerging DC

cloud applications.
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Chapter 3

3.1 Workdone:

We have created topologies using miniedit. The POX controller is implemented to

control the network between different switches and carry out the bandwidth and the shortest

poth.In our implementation we have considered various topologies that is based on data center

whish are FAT tree, Abilene topology etc.In this emulator which is mininet firstly we created a

topology and assign some lP address to different Hosts, controller and switches, after that we

have tried to send packets from one host to another and determine the shortest path between them

using some algorithm.

3.l.lTestbed setup:

Using mininet software in Ubuntu environment we have perform our implementation,

taking various topologies.In our implementation our main objective is to trace out the shortest

path between two nodes for a particular topology. In this implementation we have created a

topology in mininet environment and then use Bellmanford algorithm to find a shortest path

between hosts.After creating the mininet topology we have moved to another terminal, kill the

default controller, and run the Bellmanford algorithm ofpox controller. Ping any two hosts from

the mininet and we can see the shortest path that is created through Bellmanford algorithm.

3.1.2Mininet:

Mininet is a network emulator. It runs a collection of end-hosts, switches, routers, and

links on a single Linux kernel. It uses lightweight virtualization to make a single system look like

a complete network, running the same kernel, system, and user code. A Mininet host behaves

just like a real machine; you can ssh into it (if you start up sshd and bridge the network to your

host) and run arbitrary programs (including anything that is installed on the underlying Linux

system.) The progams you run can send packets through what seems like a real Ethernet
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interface, with a given link speed and delay. packets get processed by what looks like a real

Ethemet switch, router, or middle box, with a given amount of queuing. when two progams,

like an iperf client and server, communicate through Mininet, the measured performance should

match that of two (slower) native machines. In short, Mininet's virtual hosts, switches, links, and

controllers are the real thing - they arejust created using software rather than hardware - and for
the most part their behavior is similar to discrete hardware elements. It is usually possible to

create a Mininet network that resembles a hardware network, or a hardware network that

resembles a Mininet network, and to run the same binary code and applications on either
platform.

Some features of mininet:

(l) Its fast - starting up a simple network takes just a few seconds. This means that our run-€dit-

debug loop can be very quick.

(2) We can create custom topologies: a single switch, larger Intemet-like topologies, the Stanford

backbone, a data center, or anything else.

(3) we can run real programs: anything that runs on Linux is available for us to run. from web

servers to TCP window monitoring tools to Wireshark.

(4) we can customize packet forwarding: Mininet's switches are programmable using the

OpenFlow protocol. Custom Software-Defined Network designs that run in Mininet can easily

be transfened to hardware OpenFlow switches for line-rate packet forwarding.

(5) we can share and replicate results: anyone with a computer can run our code once we have

packaged it up.

(6) we can use it easily: we can create and run Mininet experiments by writing simple (or

complex if necessary) Pyhon scripts.

(7) Mininet is an open source project, so we are encouraged to examine its source code.
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Working with Mininet:

Creating Topologies:

Mininet supports parameterized topologies. With a few lines of python code, you can

create a flexible topology which can be configured based on the parameters you pass into it, and

reused for multiple experiments.

Running Programs in llosts:

One of the most important things you will need to do in your experiments is run programs

in hosts, so that you can run more tests than the simple pingAll0 and iper() tests which are

provided by Mininet itsell

Each Mininet host is essentially a bash shell process attached to one or more network interfaces,

so the easiest way to interact with it is to send input to the shell using the cmd() method.[3]

PIOX Controller:

POX is NOX's younger sibling. At its core, it's a platform for the rapid development and

prototyping of network control software using Python. It's one of a growing number of
frameworks for helping us write an open Flow controller. As well as being a framework for

interacting with openFlow switches, we're using it as the basis for some of our ongoing work to

help build the emerging discipline of Software Defined Networking. we're using it to explore

and prototype distribution, SDN debugging, network virtualization, controller design, and

programming models. our ultimate goal is to develop an archetypal, modem SDN controller.

PoX's is under active development, and we hope it stays that way. Is primary target is research,

and many research projects are fairly short-lived. [4]

Goals of POX Controller:

(1) One of the goals for POX is to have it be easy to get up and running.

(2) Our ultimate goal is to develop an archetype for a modem SDN controller.





Fig3.2.2: A snapshot of implementation on Bellmanlord algorithm.

In the figure shown above is the snapshot of how a shortest is been tracked by bellman

ford algorithm for a particular topology. For obtaining these rve need to use thc terminal where

rve have to create a topology and in the other terminal we need to run the pox controller. When

we ping any two hosts ofthe topology and if it pings, rve could observe from the pox controller

that a shortest path is been created between these two hosts through Bellmanford algorithm.
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A FAT Tree Topology:

ln this implementation we have considered a !Ar' 'l'ree topology, where we can

determine the shortest path. using a tool miniedit we have prepare this FAT Tree topology and

try to plng any two hosts to determine the shortest path betrveen these two hosts through which

data can be send. In this topology we have taken many switches. hosts and one controller which

is connected to each switches.

Fig 3.2.-j: f'Al' -I'ree topology

ln this figure shorvn above shows how hosts connect to each other and for pinging they

trace out the shortest path. we have consider a FAT Tree topology where switches. hosts and

controller are connected to each other. Using POX controller we run the shonest path algorithm

which is shown above in the figure. Norv rvhen we ping any two hosts f'rom the topology from

the controller side rve would observe the shortest path between two hosts.
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Fig 3.2.4. Snapshot of implementation of FA'[ l'ree topology



ABIL,EI\IE Topolog:

A higb-performanca boctbone networt suggesbd by TNTERNET 2 is ABELINE

Ne$'ort. ABELINE Topolory is prcporcd for a big geosfaphical region such as a perticular

lrrge county. An ABELINE netnrork has morc than l0Gbps networting bctw€en neighboring

hoes. This ABELINE Topology bavc been prepared by us in mininet urd try to determirc the

shortest paih.

Fig 3.2.5: ABILENE topolory
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Fig3.2.6. Snapshot of implementation of ABlI_ENFI Topologl,

Here is the implementalion procedure of how rve run the ABILENE topology in mrnrnet

and detennine the shortest path using shortest path algorithrn that runs in POX controller. As this

ls a vast topology there consists of various path to connect one host to another. From them we

need to determine the shortest path. we have try we determine the shortest path of this

ABILENE topology which is shown in the figure above.
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lperl':
'l'hough 

rve need to determine the shorlest path bctrvcen hosts ol'a krpologr', along tvith it

rie need to determine the throughput ol'lhesc two hosls ol a topology. Ws can dcternrine thls

band*idth bl,using comnrand Iperf. An Iperlis a tool lo measure the throughput of a netu,ork

that is carrving thcnt.

fig -3.2.7: Snapshot ol'bandrvidth r aluc in a sirnplc topologl
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I.ig 3.2.8. Snapshot ol' bandr.i.ic{th valuc in l.A I l.rce topologv
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Chrpter 4

4.1:Conclusion:

In our implementation we havc extorded the Beilmanford shortest path argorithn considering
nodes ucights under sDN. In this implenrentation we have considered a particurar comprcx
topologSr and detcnnine the shorEst parh through wrrich a data con be sond from sourcc lg
destinarioa we have consider FAT Toporogy, Abilene Topology, and simpre tee with mininct
in which thc bandwidth cornparison for each topology varies as folrona 13.4 Gbitr/sec, il.4
Gbits/sec' 26.5 Gbitvsec and for thc mcasur€ment of this a[ toporory we used iperf .
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