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ABSTRACT

In today’s Data center often employ SDN that are layered in most cases. As SDN provides
huge wins in Data center, it i mostly used in this area. Data center consists of vast network
~ topology, and due to this it faces problem in tracking out the shortest path. In our
implementation we have considered the well-known shortest path algorithm, Bellmanford
algorithm considering their nodes weights for a graph under SDN. We use this
implementation to trace out the shortest path and transfer packets from source to destination
with the help of mininet tools and POX controller. Thus we obtain good result in most of the
topologies like FAT topology. Abilene topology, and simple tree topology by comparing their
bandwidth , using Iperf tool.
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Chapter 1

1.1 Introduction:

Software-defined networking (SDN) is an approach to computer networking that allows
_' work administrators to manage network services through abstraction of lower-level
inctionality. SDN providers offer a wide selection of competing architectures, but at its most
'j_; wle. the SDN method centralizes control of the network by separating the control logic to off-
evice computer resources. All SDN models have some version of an SDN Controller, as well as
southbound APIs and northbound APIs.

SDN (Software-Defined Networks) were designed for the purpose that smart open-source
programmable controllers control dumb low-cost switches. However, controllability and
flexibility of SDN are restricted by the lack of information organization and division. As a result,
gontroller logics are often far more complex than they are supposed to be. In this poster, we
discuss a new way of organizing topologies and information of OpenFlow networks in data
enter, and present a management model that divides network views and information
prthogonally and orderly to reduce management complexity. In approach, regional networks on
_ layers will be aggregated and viewed as single switches to upper layers. Information of
management will be divided into three parts, which are, respectively, managed by network
managers, regional controllers and tenants. To achieve this, established a mechanism
determining which parts a massage should be sent to. In data centre networks, aggregation of
orks means that a regional network will decide its own inside logic and be seen as a single
whose ports are edge ports of the regional network to upper layers. SDN is an emerging

rchitecture that is dynamic, manageable, cost-effective, and adaptable, making it ideal for the
'_ andwidth, dynamic nature of today's applications. This architecture decouples the network
control and forwarding functions enabling the network control to become directly programmable
‘and the underlying infrastructure to be abstracted for applications and network services. The

OpenFlow protocol is a foundational element for building.




2 Objectives:

SDN (Software-Defined Networks) were designed for the purpose that smart open-source
pgrammable controllers control dumb low-cost switches. However, controllability and
':':a bility of SDN are restricted by the lack of information organization and division. As a result,
pntroller logics are often far more complex than they are supposed to be. Data centers were
nginally designed to physically separate traditional computing elements (e.g. PC servers), their
sciated storage, and the networks that interconnected them with client users. The computing
ower that existed in these types of data centers became focused on specific server functionality
inning applications such as mail servers, database servers, or other such widely used
inctionality in order to clients. Previously, those functions which were executed on the often
housands (or more) of deskiops within an enterprise organization were handled by departmental
ervers that provided services dedicated only to local use. As time went on, the departmental
ervers migrated into the data center for a variety of reasons first and foremost, to facilitate ease
f management, and second, to enable sharing among the enterprise’s users. Our main objective
in this implementation is to trace out the shortest path of a topology.




Chapter 2

2.1 Overview:
In recent years, Data volume has been increasing at rapid speed which drives the creation
of large Data Center hosting abroad range of services such as Web search, e-commerce, storage
ackup, large scientific applications, video streaming, data analytics and social networking. In
wch large Data Centers there are tens of thousands of servers spread over hundreds of racks with
s of peta bytes of storage interconnected by high capacity network infrastructure. Failures
severe impact in a large center with huge number of server- and network- elements and
ssive data storage. Therefore, it is critically important to develop solutions to ensure high
vailability of resources. Data availability is a major challenge faced by today's Data Centers. As
availability becomes a critically important requirement, many businesses use increased
amount of resources to ensure continuous operations. Maintaining uninterruptible access to all
Data Centre applications is highly desirable. As a result, Data Centers need a range of business
sontinuance solutions, from simple tape backup and remote replication to synchronous mirroring
and mirrored distributed Data Centers. Proactive replication is a key strategy coupled with
mirroring for data protection. Data replication is an effective approach for achieving high data
availability and durability in Data Centers. Data replication is a technique designed for
e icating data at two or more storage nodes attached to different racks in a Data Centre. Such
edundancy ensures at least one copy of data is available for continuous operation in the event of
rar.k switch failure or rack power failure. However, the design choice of data replication IS
omplicated by keeping the copies as closely synchronized as possible and using as little network
wdwidth as possible. Synchronous update of all copies provides high resilience to data loss but
as poor write performance and results in high network cost. SDN is a framework that increases
the flexibility of the network through separation of control and data planes. This separation
‘makes the network switching and routing devices simpler and less expensive. The control plane
could be implemented in a general purpose commodity server. This server as a centralized

Controller takes care of routing and other policies according to which the network devices

;'—'H tion.




mtrollers: The brains of the network, SDN Controllers offer a centralized view of the overall
twork, and enable network administrators to dictate to the underlying systems (like switches
d routers) how the forwarding plane should handle network traffic.

sthbound APIs: SDN uses southbound APIs to relay information to the switches and routers
glow. OpenFlow, considered the first standard in SDN, was the original southbound API and
emains as one of the most common protocols. Despite some considering OpenFlow and SDN to

s one in the same, OpenFlow is merely one piece of the bigger SDN landscape.

orthbound APIs: SDN uses northbound APIs to communicate with the applications and
siness logic above. These help network administrators to programmatically shape traffic and

s services.[2]

APPLICATION LAYER

.~ CONTROL LAYER

24

Metwork
Servicos

INFRASTRUCTURE
LAYER

Fig.2.1.15DN Architecture




2 Data Plane and Control Plane
Jata Plane (DP):

The data plane (sometimes known as the user plane, forwarding plane, carrier plane or
jearer plane) is the part of a network that carries user traffic. The data plane, the control plane
the management plane are the three basic components of telecommunications architecture.
fhe control plane and management plane serve the data plane, which bears the traffic that the
gtwork exists to carry. The data plane enables data transfer to and from clients, handling
ultiple conversations through multiple protocols, and manages conversations with remote

eers. Data plane traffic travels through routers, rather than to or from them.

n conventional networking, all three planes are implemented in the firmware of routers and
switches. Software-defined networking (SDN) decouples the data and control planes and
nplements the control plane in software instead, which enables programmatic access to make
network administration much more flexible. Moving the control plane to software allows
namic access and administration. A network administrator can shape traffic from a centralized
gontrol console without having to touch individual switches. The administrator can change any
twork switch's rules when necessary prioritizing, de-prioritizing or even blocking specific

ypes of packets with a very granular level of control. [5]
Control Plane (CP):

The control plane is the part of a network that carries signaling traffic and 1s responsible for
routing. Control packets originate from or are destined for a router. Functions of the control
lane include system configuration and management. [6] In routing, the control plane is the part
‘of the router architecture that is concerned with drawing the network map or the information ina
(possibly augmented) routing table that defines what to do with incoming packets. Control plane
functions, such as participating in routing protocols, run in the architectural control element. In
‘most cases, the routing table contains a list of destination addresses and the outgoing interface(s)
‘associated with them. Control plane logic also can define certain packets to be discarded, as well
as preferential treatment of certain packets for which a high quality of service is defined by such

mechanisms as differentiated services. Depending on the specific router implementation, there

5




w be a separate forwarding information base that is populated (i.e,, loaded) by the control
ane, but used by the forwarding plane to look up packets, at very high speed, and decide how
handle thern.7)

pntrol plane and data plane separation:
pntrol plane: Logic control forwarding plane.e.g. routing protocols, firewall configuration.

ta plane: forwards traffic according to configuration by control plane. e.g.: IP forwarding,

thernet switching.

__;u I&pﬂl‘ﬂtt?

‘Independent evolution and development. Especially software control of network.
Control from a single high-level software program. Easier to reason and debug.

¥hy does it help?

* Routing

 Enterprise networks. Security

. Research networks. Coexistence with production networks.

Data centers. VM migration, ¢.g.: Yahoo has 20,000 hosts, 400,000 VMs. Want sub-second

VM migrations. Program switches from a central server, so that forwarding follows

migration.
| eg AT&T filtering DoS attacks. IRSCP (commercialized RCP) will insert a null route to

~ filter Do$S at network edge.
Challenges for separation:
Sealability: Control element responsible for thousands of forwarding elements.

hility and security: What if a controller fails or is compromised.
i




jportunities for control and data separation:
wo examples:
New routing services in the wide area. Maintenance, egress selection, security.

. Data centers. Cost, management.

iples. Wide area.

ere are a few constrained ways to set inter domain routing policy: BGP.
imited knobs, no external knowledge (time of day, reputation of route, etc.)
istead of BGP route controller updates forwarding table.

xample 1. Maintenance dry-out. Planned maintenance of an edge router. Tell ingress routers to

yoid the router with pending maintenance. Too difficult to do in existing networks, e.g. buy
ning OSPF.

xample 2: Customer controlled egress router. Customer selects data center they want to use.

Difficult in existing networks, as routing uses destination prefix.

xample 3: Better BGP security. Offline we can determine reputation of a route. But this can't be
ncorporated into BGP route selection. Off-line anomaly detection. Prefer familiar routes over

unfamiliar routes. RCP tells routers to avoid odd routes.

Example 4: Data Centre, addressing,Layer 2 addressing: less configuration, bad scaling. Layer 3
essing: use existing routing protocols, good scaling, but high administration overhead. Use
ayer 2 addressing, but to make the addresses topology-specific rather than topology-
ndependent MAC addresses depend where they are in the topology.mHosts don't know they
have MAC address re-assigned, so how is ARP done? Destination host won't respond. A fabric
manager will intercept ARPs, it then replies with the topology-dependent Pseudo-MAC

E

(pMAC).Switches re-write MAC addresses at network edge to hosts.




her Examples:

) Dynamic access control

) Mobility and migration

) Server load balancing

) Network virtualization

) Energy-efficient networking

-;-, daptive traffic monitoring

enges of separating control and data planes:

Scalability, reliability, consistency, Approaches in RCP and ONIX.

calability in RCP: RCP must stores routes and compute routing decisions for all routers in the
AS. That's a lot to do at a single node. Strategies to reduce this are:

fliminate redundancy: store a single copy of each route to avoid redundant computation.

igeelerate lookups: maintain indexes to identify affected routers. Then RCP computes routes

nly for routers affected by a change.
unt: Only performs inter-domain (BGP) routing,

Scalability in ONIX: Partitioning. Keep track of subsets of the network state. Then apply
onsistency measures o ensure consistency between the partitions, Choice of strong and weak

jonsistency models to select correctness versus computation tradeoft.

'."i;-_: gation: A hierarchy of controllers. ONIX controllers for departments or buildings, then a

super-controller for the domain,




ligbility in RCP: Replicate. RCP has a hot spare. Each replica has its own feed of routes,
geiving exactly same inputs, running exact same algorithms, so output should be the same. So

p need for consistency protocol.

pnsistency: But if different RCPs see difference routes then they will have different outputs. If

o replicas are inconsistent then they can install a routing loop.

eed to guarantee consistent inputs: for RCP that's easy as the IGP passes the full link-state to
f‘ So RCP should compute next-hops only for routers it is connected to. .For example, one
CP in partitioned network. Only use candidate routes from partition 1 to set next-hops in
-_%.... 1 1. For example, two RCP in partitioned network. Since the two RCPs have the same data
om each partition from the IGP then they give the same output for each partition.

7;5_.-: pility in ONIX: Network failures. ONIX leaves it to applications to detect and recover.
Reachability to ONIX: Solve using typical network practices, such as multipath.

ONIX failure. Replication and distributed coordination protocol.

ge ISSUEs:

Scalability. Making decisions for many network elements.

Reliability. Correct operation under failure of the network or controller.

Consistency, Ensure consistency between controller replicas, especially in partitioned

Solutions:

Hierarchy

Aggregation

State management and distribution

. controller uses a set of tactics from those available. [8]

9




3 OpenFlow:

penFlow was originally imagined and implemented as part of network research at Stanford
sity. Its original focus was to allow the creation of experimental protocols on campus
works that could be used for research and experimentation. Prior to that, universities had to
gate their own experimentation platforms from scratch. What evolved from this initial kernel of
f:-'!t ea was a view that OpenFlow could replace the functionality of layer 2 and layer 3 protocols
mpletely in commercial switches and routers. This approach is commonly referred to as the
ean slate proposition. Later, in 2011a non-profit consortium called the Open Networking
undation (ONF) was formed by a group of service providers to commercialize, Standardize,
M promote the use of OpenFlow in production networks. The key components of the
penFlow model, as shown in Figure 3-1, have become at least part of the common definition of
DN, mainly, Separation of the control and data planes (in the case of the ONF, the control plane
jmanaged on a logically centralized controller system).Using a standardized protocol between
antroller and an agent on the network. Element for instantiating state (in the case of OpenFlow,

gwarding state). Providing network programmability from a centralized view via a modern,

Klens ihle AP1.

Switch Control Plane

OpenFlow Controller

.:?.‘l i
e -,
seesea e gdia fana e sassril

-

T

Switch

Switch

Figure 2.3-1. OpenFlow architecture (with the view that some of the control plane apps will ride

on TOP of the controller—emulating the behavior of traditional control plane apps).
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OpenFlow is a set of protocols and an API, not a product per se or even a single feature
'3 product The OpenFlow protocol uses a standardized instruction set, through which any

ow controller can send a common set of instructions to any OpenFlow Switch regardless

Yendaor,

ow Switching
Controller

OpenFlow
Protocol

Secure
channel

Group

table

Flow Flow
table | table
Pipeline

figure 2.3-2: An OpenFlow switch communicates with a controller using the OpenFlow protocol.
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itch Components:

a OpenFlow Switch consists of one or more flow tables and a group table, which perform
ket lookups and forwarding, and an OpenFlow channel to an external controller, The
atroller manages the switch via the OpenFlow protocol. Using this protocol, the controller can
d update, and delete flow entries, both reactively (in response to packets) and proactively.
ich flow table in the switch contains a set of flow entries; each flow entry consists of match

ds, counters, and a set of instructions to apply to matching packets.

tching starts at the first flow table and may continue to additional flow tables. Flow entries
gich packets in priority order, with the first matching entry in each table being used. If a
'_:'ml g entry is found, the instructions associated with the specific flow entry are executed. If
o match is found in a flow table, the outcome depends on switch configuration: the packet may

¢ forwarded to the controller over the OpenFlow channel, dropped, or may continue to the next
ow table.

: tructions associated with each flow entry describe packet forwarding, packet modification,
aup table processing, and pipeline processing. Pipeline processing instructions allow packets to
e sent to subsequent tables for further processing and allow information, in the form of
-__.-_:..-;.-, to be communicated between tables. Table pipeline processing stops when the
struction set associated with a matching flow entry does not specify a next table; at this point
g packet is usually modified and forwarded.

Flow Tables:

his section describes the components of flow tables and group tables, along with the mechanics

of matching and action handling,

12




| Flow Table:

flow table consists of flow entries.

JATCH FIELDS | COUNTERS INSTRUCTIONS

4hle 2.3-1: Main components of a flow entry in a flow table.
ich flow table entry contains:

. Match fields: to match against packets. These consist of the ingress port and packet headers,
and optionally metadata specified by a previous table.

' Counters: to update for matching packets

Instructions:to modify the action set or pipeline processing.

. Group Table

;: oup table consists of group entries. The ability for a flow to point to a group enables

enFlow to represent additional methods of forwarding.

ach group entry contains:

;ROUP IDENTIFIER | GROUP TYPE COUNTERS ACTION BUCKETS

fable 2.3-2: A group entry consists of a group identifier, a group type, counters, action buckets

nd a list of.

* Group identifier: a 32 bit unsigned integer uniquely identifying the group
. Group type: to determine group semantics,

, Counters; updated when packets are processed by a group
. Action buckets: an ordered list of action buckets, where each action bucket contains a set of

actions to execute and associated parameters,

13




Counters may be maintained for each table, flow, port, queue, group, and bucket.
enFlow-compliant counters may be implemented in software and maintained by polling
pdware counters with more limited ranges. Duration refers to the amount of time the flow has
en installed in the switch. The Receive Errors field is the total of all receive and collision
fors as well as any others not called out in the table. Counters wrap around with no overflow

. If a specific numenc counter is not available in the switch, its value should be set to -1.

Each flow entry contains a set of instructions that are executed when a packet matches
¢ entry. These instructions result in changes to the packet, action set and/or pipeline
ocessing. Supported instructions include:

Apply-Actions action(s): Applies the specific action(s) immediately, without any change to
the Action Set. This instruction may be used to modify the packet between two tables or to
execute multiple actions of the same type.

| Clear-Actions: Clears all the actions in the action set immediately.

. Write-Actions action(s): Merges the specified action(s) into the current action set. If an
action of the given type exists in the current set, overwrite it, otherwise add it.

| Write-Metadata metadata / mask: Writes the masked metadata value into the metadata
field. The mask specifies which bits of the metadata register should be modified.

. Goto-Table next-table-id; Indicates the next table in the processing pipeline. The table-id
must be greater than the current table-id. The flows of last table of the pipeline cannot
include this instruction.

Action Set:

An action set is associated with each packet. This set is empty by default. A flow entry
gcan modify the action set using a Write-Action instruction or a Clear-Action instruction
associated with a particular match. The action set is carried between flow tables. When an
nstruction set doesn’t contain a Goto-Table instruction, pipeline processing stops and the actions

n the action set are executed. The actions in an action set are applied in the order specified

14




ow, regardless of the order that they were added to the set. If an action set contains a group

tion, the actions in the appropriate action bucket of the group are also applied in the order
pecified below. The switch may support arbitrary action execution order through the action list
the Apply-Actions instruction,

Copy TTL inwards: apply copy TTL inward actions to the packet

Pop: apply all tag pop actions to the packet.

Push: apply all tag push actions to the packet.

Copy TTL outwards: apply copy TTL outwards action to the packet.

Decrement TTL: apply decrement TTL action to the packet.

Set: apply all set-field actions to the packet.

Qos: apply all QoS actions, such as set queue to the packet.

Group: if a group action is specified, apply the actions of the relevant group bucket(s) in the
specified by this list.

Output: if no group action is specified, forward the packet on the port specified by the output

"
A0n.

ow Channel:

he OpenFlow channel is the interface that connects each OpenFlow switch to a controller.
ough this interface, the controller configures and manages the switch, receives events from
ke switch, and sends packets out the switch. Between the data path and the OpenFlow channel,
'Z"interfﬂm is implementation-specific, however all OpenFlow channel messages must be
pmatted according to the OpenFlow protocol. The OpenFlow channel is usually encrypted
sing TLS, but may be run directly over TCP.

enFlow Protocol:

- The OpenFlow protocol is a standardized protocol for interacting with the forwarding
behaviors of switches from multiple vendors. This provide us a way to control the behavior of
hes throughout our network dynamically and programmatically. OpenFlow is a key
otocol in many SDN solutions. The OpenFlow protocol supports three message types,

controller-to-switch, asynchronous, and symmetric, each with multiple sub-types. Controller-to-

15




itch messages are initiated by the controller and used to directly manage or inspect the state of
¢ switch. Asynchronous messages are initiated by the switch and used to update the controller
ork events and changes to the switch state. Symmetric messages are initiated by either the
witch or the controller and sent without solicitation, The message types used by OpenFlow are
cribed below.

Controller-to-Switch:

ontroller/switch messages are initiated by the controller and may or may not require a response

|- the switch.

eatures: The controller may request the capabilities of a switch by sending a features request,
e switch must respond with a features reply that specifies the capabilities of the switch. This is
smmonly performed upon establishment of the OpenFlow channel.

onfiguration: The controller is able to set and query configuration parameters in the switch.

the switch only responds to a query from the controller.

fy-modification: Modify-modification messages are sent by the controller to manage state
) the switches. Their primary purpose is to add/delete and modify flows/groups in the

JpenFlow tables and to set switch port properties.
ead-State: Read-State messages are used by the controller to collect statistics from the switch.

et-out: These are used by the controller to send packets out of a specified port on the
switch, and to forward packets received via Packet-in messages. Packet-out messages must
ontain a full packet or a buffer ID referencing a packet stored in the switch. The message must
lso contain a list of actions to be applied in the order they are specified, an empty action list
drops the packet,

er. Barrier requestreply messages are used by the controller to ensure message

ependencies have been met or to receive notifications for completed operations.
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Asynchronous: Asynchronous messages are sent without the controller soliciting them from a
itch, Switches send asynchronous messages to the controller to denote a packet arrival, switch

e change, or error. The four main asynchronous message types are described below.

-in: For all packets that do not have a matching flow entry, a packet-in event may be sent
the controller (depending on the table configuration). For all packets forwarded to the port, a
cket-in event is always sent to the controller. If the switch has sufficient memory to buffer
gkets that are sent 1o the controller, the packet-in events contain some fraction of the packet
ader (by default 128 bytes) and a buffer ID to be used by the controller when it is ready for the
.f's th to forward the packet. Switches that do not support internal buffering (or have run out of

emal buffering) must send the full packet to the controller as part of the event. Buffered
pckets will usually be processed via a Packet-out message from the controller, or automatically

pired after some time.,

low-Removed: When a flow entry is added to the switch by a flow modify message, an idle

peout value indicates when the entry should be removed due to a lack of activity, as well as a

rd timeout value that indicates when the entry should be removed, regardless of activity.

he flow modify message also specifies whether the switch should send a flow removed message
 the controller when the flow expires. Flow delete requests should generate flow removed
essages for any flows with the OFPFF_SEND _FLOW_REM flag set.

ort-status: The switch is expected to send port-status messages to the controller as port

nfiguration state changes. These events include change in port status events (for example, if it

was brought down directly by a user).

rror: The switch is able to notify the controller of problems using error messages.

L Symmetric: Symmetric messages are sent without solicitation, in either direction.

Jello: Hello messages are exchanged between the switch and controller upon connection startup.
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ho: Echo request/reply messages can be sent from either the switch or the controller, and must
m an echo reply. They can be used to measure the latency or bandwidth of a controller-

ich connection, as well as verify its aliveness.

perimenter: Experimenter messages provide a standard way for OpenFlow switches to offer
tional functionality within the OpenFlow message type space. This is a staging area for

ures meant for future OpenFlow revisions,

imple demonstration of an OpenFlow network:

Figure 2.3-3: A simple OpenFlow set-up

network is launched which would look like the above figure 2.3-3. It would have an Open
low kernel switch S1, A OpenFlow reference controller CO and four emulated host H1, H2, H3

id H4. A simple web server is launched in H4 and generate an http request from H1.
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IMininet is used to emulate this network

Figure 2.3-4: Console showing the topology

Figure 2.3-4 shows the mininet console which consist of sudo mn —topo=single, 4 commands

that show the topology. The mininet dump Command would show the various nodes. Controller

1§ not been specified therefore mininet would run the OpenFlow reference controller CO.
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In the figure 2.3- 5 A simple python web server is launched in H4 by h4 python —-m
SimpleHTTPServer 80 &command .Now a simple http request is generated from HI to H4 by hl

wget 10.0.0.4 command.

eth0

Figure 2.3-6: SYN packet passed from H1 to switch S1

Since it is a TCP conversation therefore it always start with a SYN message as shown in
figure 2.3-6.As it is an OpenFlow switch,S1 would check its own local OpenFlow tables. Since it
is the first packet for OpenFlow, it probably do not have any flow entry matching this packel,

this is called the table-miss. Usually there are no matching flows the default action is to send this

packet to the controller as shown in figure 2.3- 7.
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Packet-IN

Buffer 1D = 250
SYN (port 80)

eth0

H1

Figure 2.3-7: Packet-in message produced by switch S1 forwarded to Controller CO

S1 would send a Packet-in message to CO,This Packet-in message would encapsulate the
original TCP SYN message. It may include the entire packet or might include the entire packet
headers and references a buffer id. When using a buffer id, the switch buffers the entire packet so
that the controller later instruct the switch what to do with the stored packet by referencing the
buffer id. Now the controller get the Packet-in message. Typically a couple of things can happen
here. The controller can send out a Packet-out message or Flow-modification message back to
the switch.
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Packet-IN Packet-OUT
Buffer 1D = 250 5% i A2
it il Action = Forward port 4

Figure 2.3-8: Packet-out message generated from Controller CO forwarded to switch S1

In case of Packet-out message, it is the instruction from controller to the switch what to
do with the specific packet. The Packet-out message would contain a complete encapsulated
message or it might reference the buffer id of the packet to the switch is drawn. In the figure 2.3-
8 the controller instruct the switch S1 to send the packet referenced with buffer id-250 which was
the TCP SYN message from H1 out of its port 4 toward H4, Alternatively, the controller might
also send the Flow-modification message which instruct the switch to install a new flow-entry in
its flow table. Flow entries let the switch know what to with future similar packet arrives at the
switch based on matching fields and masks, In the figure (2.3-9), the controller says effectively
that any TCP port 80 request from IP address and MAC address of H1 to the IP address and
MAC address of H4, send all of those out of port 4. The flow modification message also contain
a buffer 1d, this will tell the switch that the first packet it had buffered i.e. number-250, release
that packet from the buffer and apply the Action to the message. In the figure 2.3-9 consist of a
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and single Action but many set of Action are possible. For example Action can include
hanging multiple headers like Ips, MACs, and TCP ports. We can POP, PUSH or SWAP

impules labels. We also take Actions like flooding out all ports, dropping the packets or telling
the switch to send the

Match & Mask
Bulfer I0 = 250

Idle Timeout = 20
Hard Timeout = &0
Acthon = Forward port
Priarity = 5000

Figure 2.3-9: Flow-modification message generated from switch S1 forwarded to controller CO.

Matching packet to the controller. We can also tell the switch to use its non-OpenFlow
packet processing. The Flow-modification message also shows two kind of timeouts. The

timeout says how long to catch the flow entries. The Flow-modification message shows two
timeouts:

Idie Timeouts: The Idle timeout is 20 which means if there won’t be any matching http packets
request for 20sec, remove this flow entry.




Hard Timeouts: The Hard timeout of 60 means, no matter if there are alike matching packets or
not, just remove this flow entry. Another important component is the priority. Priority is required

o sort the various flow entries.

| Match & Mask

I Buffer 1D = 250

| Idle Timeout = 20
BufferID = 250 4 Hard Timeout = 60

|

SYN (port 80) A:Itinn = Forward port
[ ] Priority = 5000

Flow-ENTRY (H1->H4 Port 80)

Figure 2.3-10: SYN message received by 14

The Flow-modification message resultant a new flow entry in switch S1 shown in figure 2.3-10
“and since it references a buffer id, it also results in original TCP SYN message packet can be

arded out of port 4 just like the action says to do. H4 receives the packet from H1.
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Packet-IN
Buffer ID = 251

Figure 2.3 -11: H4 generates SYN/ACK message, received by switch S1 and S1
generates Packet-in message.

In figure 2.3-11 H4 replies the TCP SYN message through SYN/ACK message. The SYN/ACK
message arrives 1o the switch S1.The switch S1 has no specific Flow entries matching this packet
at any of its flow table. Again this is a table-miss. So S1 would encapsulate the reply into a
Packet-in message and sends it to the controller. It may contain the entire packet in an OpenFlow
Packet-in message or might be some headers from the packet along with the buffer id reference
number In this case it is 251.The SDN controller CO would typically send a Packet-out or a
Flow-modification message. The Packet-out message would tell the switch what to do with the
specific packet. Again the controller might send the entire packet in one sent encapsulating
within the Packet-out message or might references a buffer id stored in the switch saying to
release the packet stored in buffer id 251 though proceeding the Actions specified in the Packet-
out message shown in figure 2,3-12,
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co

——

E OR Butfer ID = 251

SYNJACK
Action = Forward port 1

ethD

¢ 2.3-12: Controller CO generates Packet-out message and send it to switch S1

Again the controller might send a Flow-modification message specifving what to do with
the future packets matching specified fields. It may also have a buffer id to reference the

currently buffer packet on the switch. It also have the timeouts, Actions and priority fields shown
in figure 2.3-13,
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Cco

Match & Mask
Bufter ID = 251 \

Flow-MOD idie Timeaut = 20
Hard Timeout = B0

Action = Forwand port 1
Priority = S000

Butfor iD= 251

Packet-IN
SYMN/ACK

Flow-ENTRY (Ha->H1 Reply) S1

flow entry and flow tables what to with the similar kind of packets. Thus it’s the completion of
the TCP handshake go through as well as the http request and the hittp reply go through the
switch S1without any need to talk to the controller CO .

2.4 Data Center Concept and Constructs:

Prior to the existence of data centers, computing, storage, and the networks that
interconnected them existed on the desktop PCs of enterprise users. As data storage grew, along
mith the need for collaboration, departmental servers were installed and served this purpose.
‘However, they provided services that were dedicated only to local or limited use. As time went
o, the departmental servers could not handle the growing load or the widespread collaborative
needs of users and were migrated into a more centralized data center. Data centers facilitated in
case of hardware and software management and maintenance and could be more easily shared by
all of the enterprise’s users. Modern data center were originally created to physically separate
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traditional computing elements (e.g., PC servers), their associated storage (i.e., storage area
orks or SANs) and the networks that interconnected them with client users. The computing
power that existed in these types of data centers became focused on specific server functionality,
A h as running applications that included mail servers, database servers, or other enterprise IT
applications.

Modern data centers were originally created to physically separate traditional computing
elements (e.g., PC servers), their associated storage (i.e., storage area networks or SANs) and the
networks that interconnected them with client users. The computing power that existed in these
types of data center became focused on specific server functionality, such as running applications
that included mail servers, database servers, or other enterprise I'T applications.[10]

A Modern data center:

With further advances and increases in memory, computing, and storage, data center
servers were increasingly capable of executing a variety of operating systems simultaneously in a
virtual environment. Operating systems such as Windows Server that previously occupied an
entire bare metal machine were now executed as virtual machines, each running whatever
applications client users demanded. Moreover, network administrators now had the option to
locate that computing power based not on physical machine availability. They could instead
_dynamically grow and shrink it as resource demands changed. Thus began the age of elastic
computing. Within the elastic computing environment, operations departments were able to
move servers to any physical data center location simply by pausing a virtual machine and
copying a file across their network to a new physical computing location (i.e. server). They could
_gven spin up new virtual machines simply by cloning the same file and telling the hypervisor,
either locally or on some distant machine, to execute it as a new instance of the same service,
thus expanding that resource. If the resource was no longer needed or demand waned, server
instances could be shut down or even just deleted. This flexibility allowed network operators to
start optimizing the data center resource location and thus utilization based on metrics such as
power and cooling. By using bin packing techniques, virtual machines could be tightly mapped

“onto physical machines, thus optimizing for different characteristics such as
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ocality of network between these servers, or as a means of even shutting down unused physical
machines to save on power or cooling. In fact, this is how many modern data centers optimize
for virtual machine placement because their dominating cost factors are power and cooling. In
these cases, an operator can turn down (or off) cooling an entire portion of a data center.
imilarly, an operator could move or dynamically expand computing, storage, or network

es by geographical demand. Figure 2.4-1 shows a modern data center.

Figure 2.4-1: A modern data center comprised of compute, storage, and network resources

As with all advances in technology, this newly discovered flexibility in operational deployment
of computing, storage, and networking resources brought about a new problem: one of
‘operational efficiency both in terms of maximizing the utilization of storage and computing

power and in terms of power and cooling,

As mentioned earlier, network operators began to realize that computing power demand in
general increased over time. To keep up with this demand, IT departiments would order all the
equipment they predicted would be needed for the following year. However, once this equipment
arrived and was placed in racks, it would consume power, cooling and space resources—even if

it was not used for many months.
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The three-tiered architecture:

The three-tiered architecture is shown in Figure 2.4-2. In the three-tiered architecture, a
sir gle VM is required to implement each of the three layers of the system, but more component
s can be spun-up at any time to execute either locally on the same compute server or
remotely in order to expand or contract computing resources. There is still some debate about
frequently live migration might occur between data centers as a DCI use case. The
reasoning is that in order for any migration to take place, a file copy of the active VM to a new

less common in practice. Instead, moving to a three-tiered application architecture where the

is to create and destroy machines 1s far simpler (and safer).

WAP Handset

Figure 2.4-2:The three-tiered architecture

Data Centre Interconnect (DCI):

Now that we have introduced the basic concepts of what a data center is and how one can
be built, let’s discuss how one or more data centers can be connected. In particular, for

configurations where multiple data centers are required either for geographic diversity, disaster
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recovery, service, or cloud bursting, data centers are interconnected over some form of Wide
Area Network (WAN). This is the case even if data centers are geographically down the street
from one another; even in these cases, some metro access network is typically used to
interconnect them, A variety of technological options exist that can achieve these

Interconnections.

In cases where two or more data centers exist, then you must consider how to connect

these data centers. For example, a tenant may have arbitrary numbers of virtual machines

residing in each of these different data centers yet desires that they be at least logically
connected. The Data Centre Interconnect (DCI) (see Figure 2.4-3) puts all VMs of a given tenant
‘across all data centers on the same L2 or L3 underlying tenant network.

Data Center 1 i)au Center 2
Figure 2.4-3: Data Centre Interconnect (DCI)

As it turns out, interconnecting data centers is not necessarily a simple thing because
there are a variety of concerns to keep in mind, But before jumping feet first into all the various
‘ways in which DCI can be implemented, let’s first examine some of the requirements of any

- good DCI solution, and more importantly, some of its fallacies.
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allacies of Data Centre Distributed Computing:

When designing a data center and an architecture, or strategy, for interconnecting two or
data centers, one inevitably needs to list the requirements of the interconnection. These
often start with a variety of assumptions, and we have found that in practice, many of these fall
into a category of things that seem to make sense in theory, but in practice are impossible to
guarantee or assume. These assumptions include the following;

* The network is relhiable.

* Latency 1s zero.

+ The network is secure.

* Topology doesn’t change.

* There is one administrator,

* Transport cost 1s zero.

* The network 1s homogeneous.

At first, these notions may seem quite reasonable, but in practice they are quite difficult
{or impossible) to achieve. For example, the first four points make assumptions about the
technology being employed and the equipment that implements it. No equipment is perfect or
functions flawlessly, and so it is often a safer bet to assume the opposite of these first points. In
terms of points four to six, these fall under administrative or personnel issues, All things equal,
once your network is configured, it should continue operating that way until changed.[11]
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5 Area of Implementation:

One example, where SDN can provide huge wins, is in the data centre. A data centre,
ically consists of many racks of servers. And any particular cluster might have, as many as
000 servers. Assuming that each one of these servers can run about 200 virtual machines.
That's 400,000 virtual machines in a cluster. A significant problem is provisioning or migrating
ﬂ!ese virtual machines in response to varying traffic loads. SDN solves this problem by
programming the switch state from a central database. So supposing, | have two virtual machines
within the data centre that needs to communicate with one another. The forwarding state in the
switches, in the data centre ensures that traffic is forwarded correctly, If we need to provision
additional virtual machines. Or migrate a virtual machine from one server to another in the data
centre, the state in these switches must be updated. Updating the state in this fashion is much
easier to do, from a central controller or a central database, facilitating. This type of Virtual
Machine Migration in the data centre is one of the early killer apps of software-defined
networking. This type of migration is also made easier by the fact that the servers are addressed
with Layer two Addressing. And the entire data centre Looks like a flat layer two topology. What
this means, 1s that a server can be migrated from one portion of the data centre to another without
requiring the virtual machine to obtain new addresses. All that needs to happen for forwarding to
work,is the state of these switches. Needs to be updated. The task of updating switch date in this
fashion 1s very easy to do, when the control data plans are and separate.

2.5.1 Data Centre:

In today’s data centers often employ SDNs that are layered in most cases. However,
information overwhelming has been a limitation to SDN deployment. A management model for
data center networks has been presented in which, regional networks on lower layers will be
aggregated and viewed as single switches to upper layers. Management information will be
divided into three parts, which can be seen by network managers, regional controllers and
tenants, respectively.  Multi-tier data center networks (DCN) deploy rigid control and
management platforms, which are not able to accommodate the ever-growing workload driven

by the increasing demand of high-performance data center (DC) and cloud applications. In
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response to this, the EC FP7 project LIGHTNESS (Low Latency and High Throughput Dynamic
‘Network Infrastructures for High Performance Datacenter Interconnects) is proposing a new
flattened optical DCN architecture capable of providing dynamic, programmable, and highly
‘available DCN connectivity services while meeting the requirements of new and emerging DC




Chapter 3

3.1 Workdone:

We have created topologies using miniedit. The POX controller is implemented to
control the network between different switches and carry out the bandwidth and the shortest
path.In our implementation we have considered various topologics that is based on data center
whish are FAT tree, Abilene topology etc.In this emulator which is mininet firstly we created a
topology and assign some IP address to different Hosts, controller and switches, after that we
have tried to send packets from one host to another and determine the shortest path between them

using some algorithm.
J.1.1Testbed setup:

Using mininet software in Ubuntu environment we have perform our implementation,
taking various topologies.In our implementation our main objective is to trace out the shortest
path between two nodes for a particular topology. In this implementation we have created a
topology in mininet environment and then use Bellmanford algorithm to find a shortest path
‘between hosts. After creating the mininet topology we have moved to another terminal, kill the
default controller, and run the Bellmanford algorithm of pox controller. Ping any two hosts from
the mininet and we can see the shortest path that is created through Bellmanford algorithm.

J.1.2Mininet:

Mininet is a network emulator. It runs a collection of end-hosts, switches, routers, and
Ilnks on a single Linux kernel. It uses lightweight virtualization to make a single system look like
@ complete network, running the same kernel, system, and user code. A Mininet host behaves
Just like a real machine; you can ssh into it (if you start up sshd and bridge the network to your
“host) and run arbitrary programs (including anything that is installed on the underlying Linux
system.) The programs you run can send packets through what seems like a real Ethernet
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interface, with a given link speed and delay. Packets get processed by what looks like a real
Ethernet switch, router, or middle box, with a given amount of queuing. When two programs.
f'.like an iperf client and server, communicate through Mininet, the measured performance should
match that of two (slower) native machines. In short, Mininet's virtual hosts, switches, links, and
controllers are the real thing — they are just created using software rather than hardware — and for
the most part their behavior is similar to discrete hardware elements. It is usually possible to
create a Mininet network that resembles a hardware network, or a hardware network that

resembles a Mininet network, and to run the same binary code and applications on either
platform.

Some features of mininet:

(1) Its fast - starting up a simple network takes just a few seconds. This means that our run-edit-
debug loop can be very quick.

(2) We can create custom topologies: a single switch, larger Internet-like topologies, the Stanford
backbone, a data center, or anything else.

(3) We can run real programs: anything that runs on Linux is available for us to run, from web
servers to TCP window monitoring tools to Wireshark.

(4) We can customize packet forwarding: Mininet's switches are programmable using the
OpenFlow protocol. Custom Software-Defined Network designs that run in Mininet can easily
be transferred to hardware OpenFlow switches for line-rate packet forwarding,

(5) We can share and replicate results: anyone with a computer can run our code once we have

packaged it up.

(6) ' We can use it easily: we can create and run Mininet experiments by writing simple (or

complex if necessary) Python scripts.

(7) Mininet is an open source project, so we are encouraged to examine its source code.
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‘Working with Mininet:
Creating Topologies:

Mininet supports parameterized topologies. With a few lines of Python code, you can
ctreate a flexible topology which can be configured based on the parameters you pass into it, and
reused for multiple experiments,

Running Programs in Hosts:

One of the most important things you will need to do in your experiments is run programs
in hosts, so that you can run more tests than the simple pingAll() and iperf{) tests which are
provided by Mininet itself.

Each Mininet host is essentially a bash shell process attached to one or more network interfaces,
so the easiest way to interact with it is to send input to the shell using the cmd() method.[3]

POX Controller:

POX is NOX"s younger sibling. At its core, it’s a platform for the rapid development and
prototyping of network control software using Python. It's one of a growing number of
frameworks for helping us write an Open Flow controller. As well as being a framework for
inferacting with OpenFlow switches, we’re using it as the basis for some of our ongoing work to
help build the emerging discipline of Software Defined Networking. We're using it to explore
and prototype distribution, SDN debugging, network virtualization, controller design, and
programming models. Our ultimate goal is to develop an archetypal, modern SDN controller.
POX’s 1s under active development, and we hope it stays that way. Is primary target is research,
and many research projects are fairly short-lived. [4]

Goals of POX Controller:

(1) One of the goals for POX is to have it be easy to get up and running
(2) Our ultimate goal is to develop an archetype for a modern SDN controller,
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3.2 Result: i
'Using Bellmanford to find a shortest path:

In this implementation we have created a topology in mininet environment and then use
Bellmanford algorithm to find a shortest path between hosts. After creating the mininet topology
‘we have moved to another terminal, kill the default controller, and run the Bellmanford
algorithm of pox controller. Ping any two hosts from the mininet and we can see the shortest path
that is created through bellman ford algorithm.

A Simple Topology:

Fig 3.2.1: A Simple Topology in miniedit

38




9.
B
s By
by
i
%..
B

A

e =GB

Fig 3.2.2: A snapshot of implementation on Bellmanford algorithm

In the figure shown above is the snapshot of how a shortest is been tracked by bellman
ford algorithm for a particular topology. For obtaining these we need to use the terminal where
we have to create a topology and in the other terminal we need to run the pox controller, When
we ping any two hosts of the topology and if it pings, we could observe from the pox controller

that a shortest path is been created between these two hosts through Bellmanford algorithm.
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A FAT Tree Topology:

In this implementation we have considered a FAT Tree topology, where we can
determine the shortest path. Using a tool miniedit we have prepare this FAT Tree topology and
try to ping any two hosts to determine the shortest path between these two hosts through which
data can be send. In this topology we have taken many switches, hosts and one controller which
Is connected to each switches.

iam»DpD

o

Fig 3.2.3: FAT Tree topology

In this figure shown above shows how hosts connect to each other and for pinging they
trace out the shortest path. We have consider a FAT Tree topology where switches, hosts and
controller are connected to each other. Using POX controller we run the shortest path algorithm
which is shown above in the figure. Now when we ping any two hosts from the topology from
the controller side we would observe the shortest path between two hosts.
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Fig 3.2.4: Snapshot of implementation of FAT Tree topology
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ABILENE Topology:

shortest path.

A high-performance backbone network suggested by INTERNET 2 is ABELINE
Network. ABELINE Topology is prepared for a big geographical region such as a particular
large country. An ABELINE network has more than 10Gbps networking between neighboring
hosts. This ABELINE Topology have been prepared by us in mininet and try to determine the

Fig 3.2.5: ABILENE topology
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Fig 3.2.6: Snapshot of implementation of ABILENE Topology

Here is the implementation procedure of how we run the ABILENE topology in mininet

and determine the shortest path using shortest path algorithm that runs in POX controller. As this
is a vast topology there consists of various path to connect one host to another. From them we
need to determine the shortest path. We have try we determine the shortest path of this

ABILENE topology which is shown in the figure above
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Ipert:

I'hough we need to determine the shortest path between hosts of a topology, along with it
we need to determine the throughput of these two hosts of a topology. We can determine this
bandwidth by using command Iperf. An Iperfis a tool to measure the throughput of a network

that is carrying them
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Fig 3.2.9: Snapshot of bandwidth value in Abilene topology
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Chapter 4

4.1:Conclusion:

In our implementation we have extended the Bellmanford shortest path algorithm considering
nodes weights under SDN. In this implementation we have considered a particular complex

topology and determine the shortest path through which a data can be send from source to

destination. We have consider FAT Topology, Abilene Topology, and simple tree with mininet

in which the bandwidth comparison for each topology varies as follows 13.4 Gbits/sec, 114
Gbits/sec, 26.5 Gbits/sec and for the measurement of this all topology we used iperf,
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